УДК 622.276.1/.4:519.87

ИСПОЛЬЗОВАНИЕ МЕТОДА НЬЮТОНА – РАФСОНА ПРИ МНОГОКОМПОНЕНТНОМ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ЖИДКИХ И ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ

И. В. Афанаскин, С. Г. Вольпин, А. В. Королев, П. В. Ялов

Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук, Ivan@Afanaskin.ru

Рассмотрена система дифференциальных уравнений для определения давления, насыщенности и концентрации компонентов при моделировании трехфазной многокомпонентной фильтрации нефти, газа и воды. Описан метод определения концентраций компонентов в фазах путем решения исходной системы уравнений материального баланса смеси с помощью метода Ньютона — Рафсона. Приведен пример с использованием указанного метода для моделирования водогазового воздействия.

Ключевые слова: композиционная модель, многокомпонентная фильтрация, фазовые переходы.

USE OF NEWTON – RAPHSON METHOD IN MULTICOMPONENT MATHEMATICAL MODELING OF LIQUID AND GAS HYDROCARBONS DEPOSITS DEVELOPMENT

I. V. Afanaskin, S. G. Volpin, A. V. Korolev, P. V. Yalov

System Research Institute, Russian Academy of Sciences, Ivan@Afanaskin.ru

A system of differential equations for determining the pressure, saturation, and concentration of components in the simulation of three-phase multicomponent flow of oil, gas, and water is considered. A method for determining the concentration of components in phases is described by solving the initial system of equations for the material balance of a mixture using the Newton – Raphson method. An example of the use of this method for modeling the water-alternating-gas injection is given.

Keywords: compositional model, multicomponent flow, phase transitions.

Введение. Многокомпонентное (композиционное) моделирование позволяет проводить расчеты внутрипластовых процессов при разработке месторождений жидких и газообразных углеводородов (нефть, газ, конденсат) с выделением большого числа компонентов (или псевдокомпонентов) с различными физико-химическими свойствами. Это необходимо для точного учета добычи отдельных компонентов, содержащихся в продукции скважин, а также для моделирования некоторых процессов повышения нефтеотдачи и интенсификации нефтедобычи, связанных со сложными фазовыми превращениями в продуктивных пластах.

Часто для расчета равновесных составов обходятся использованием аппарата коэффициентов распределения, заданных функциями от давления и температуры. Более точные методы включают использование уравнений состояния как для расчета фазовых равновесий, так и для определения плотностей пластовых флюидов, что позволяет получать внутренне согласованные характеристики пластовой системы вплоть до критических состояний.

В этой работе концентрации компонентов в фазах и фазовые плотности определяются из уравнений, определяющих условия равновесия пластовой системы с использованием

кубических уравнений состояния, а также уравнений материального баланса компонентов смеси с помощью метода Ньютона – Рафсона.

1. Система дифференциальных уравнений. Рассмотрим математическую модель трехфазной многокомпонентной (композиционной) изотермической фильтрации газа, нефти и воды [1–5, 7, 11]. Будем считать, что водный компонент присутствует только в водной фазе, а углеводородные компоненты могут находиться как в нефтяной, так и в газовой фазах. Концентрация компонента в фазах определяется с помощью уравнения состояния.

Складывая уравнения материального баланса фаз [5, 11], запишем уравнение для давления в следующем виде:

$$\frac{\partial}{\partial t} \left[\phi \left(\xi_o S_o + \xi_g S_g + \xi_w S_w \right) \right] + \nabla \left(\xi_o \overrightarrow{W}_o + \xi_g \overrightarrow{W}_g + \xi_w \overrightarrow{W}_w \right) = -\overrightarrow{q}_o - \overrightarrow{q}_g - \overrightarrow{q}_w, \tag{1}$$

где ϕ — пористость пласта; ξ_{α} — мольная фазовая плотность, $\alpha = o, g, w$; S_{α} — фазовая насыщенность, $\alpha = o, g, w$; $\overrightarrow{W}_{\alpha}$ — фазовая скорость фильтрации, $\alpha = o, g, w$; $\overrightarrow{q}_{\alpha}$ — плотность источника фазы, $\alpha = o, g, w$; ∇ — оператор Гамильтона.

Скорости фильтрации фаз будем определять с помощью обобщенного закона Дарси:

$$\overrightarrow{W}_{\alpha} = -\frac{kk_{r\alpha}}{\mu_{\alpha}} \left(\nabla P_{\alpha} + \rho_{\alpha} g \nabla D \right), \ \alpha = 0, g, w, \tag{2}$$

где k — абсолютная проницаемость пласта; μ_{α} — динамическая вязкость фазы α , ρ_{α} — массовая плотность фазы α , $k_{r\alpha}$ — относительная фазовая проницаемость фазы α , D(X) — превышение точки пласта над некоторой горизонтальной плоскостью, g — ускорение силы тяжести.

Уравнение (1) можно переписать в виде [5, 11]:

$$\phi_0 \frac{\partial \xi_s}{\partial t} + \xi_s \phi_0 C_r \frac{\partial P}{\partial t} + \nabla \left(\xi_o \overrightarrow{W}_o + \xi_g \overrightarrow{W}_g + \xi_w \overrightarrow{W}_w \right) = -\overrightarrow{q}_o - \overrightarrow{q}_g - \overrightarrow{q}_w, \tag{3}$$

где

$$\xi_{\mathcal{S}} = \xi_{\mathcal{O}} S_{\mathcal{O}} + \xi_{\mathcal{E}} S_{\mathcal{E}} + \xi_{\mathcal{W}} S_{\mathcal{W}}, \tag{4}$$

 ϕ_0 — пористость при начальном пластовом давлении; C_r — сжимаемость пласта; $P \equiv P_o$ — давление в нефтяной фазе.

Линеаризуя в уравнении (3) средневзвешенную мольную плотность ξ_s по давлению методом Ньютона, получаем уравнение для давления.

Запишем уравнение сохранения компонента i в смеси [5, 11]:

$$\frac{\partial}{\partial t} \left[\phi \ z_i \left(\xi_o S_o + \xi_g S_g \right) \right] + \nabla \left(\xi_o \overrightarrow{W}_o + \xi_g \overrightarrow{W}_g \right) = -\overrightarrow{q}_i, \quad i = 1, 2, ..., N_c,$$
 (5)

где z_i — мольная концентрация компонента i в нефтяной и газовой фазах; N_c — количество компонентов.

Обозначив

$$N_i = z_i \left(\xi_o S_o + \xi_g S_g \right), \tag{6}$$

перепишем уравнение (5) в виде:

$$\phi_0 \frac{\partial N_i}{\partial t} + \phi_0 C_r N_i \frac{\partial P}{\partial t} + \nabla \left(\xi_o \overrightarrow{W}_o + \xi_g \overrightarrow{W}_g \right) = -\overrightarrow{q}_i. \tag{7}$$

Уравнение (7) является уравнением для числа молей компонента i в единице порового объема N_i .

Тогда мольная концентрация компонента i в нефтяной и газовой фазах определяется как:

$$z_i = \frac{N_i}{\sum_{i=1}^{N_c} (N_i)}.$$
 (8)

Содержание компонентов в нефтяной и газовой фазах (x_i и y_i), мольные доли (L и V) и мольные плотности фаз (ξ_o и ξ_g) определяются с использованием уравнения состояния.

Тогда с учетом водонасыщенности S_{w} (способ определения которой описан ниже) можно определить S_{o} , S_{g} — насыщенности нефтью и газом соответственно:

$$S_o = \frac{L\xi_g (1 - S_w)}{V\xi_o + L\xi_g}, \ S_g = \frac{V\xi_o (1 - S_w)}{V\xi_o + L\xi_g}.$$
 (9)

В качестве уравнения состояния воспользуемся кубическим уравнением Мартина в обобщенной форме [5–6, 9–11]:

$$Z^{3} + E_{2}Z^{2} + E_{1}Z + E_{0} = 0. {10}$$

Коэффициенты этого уравнения E_2 , E_1 и E_0 определяются в зависимости от принятого вида уравнения состояния:

- уравнение Пенга Робинсона;
- уравнение Редлиха Квонга;
- уравнение Соаве Редлиха Квонга.

Максимальный положительный корень уравнения (10) $Z_{\rm g}$ равен коэффициенту сверхсжимаемости газа, а минимальный положительный корень $Z_{\rm o}$ — коэффициенту сверхсжимаемости нефти.

Уравнение для водонасыщенности запишем как [5, 11]:

$$\frac{\partial}{\partial t} \left(\phi \xi_{w} S_{w} \right) + \nabla \left(\xi_{w} \overrightarrow{W}_{w} \right) = -\overrightarrow{q}_{w}. \tag{11}$$

Учитывая, что

$$\xi_{w} = \frac{\xi_{w0}}{B_{...}},$$
 (12)

где ξ_{w0} — молярная фазовая плотность воды при давлении P_0 ; B_w — объемный коэффициент воды, а также

$$B_{w} = B_{w0} [1 - C_{w} (P - P_{0})], \tag{13}$$

где B_{w0} — объемный коэффициент воды при давлении P_0 ; C_w — сжимаемость воды, уравнение (11) можно переписать в виде [5, 11]:

$$\phi_0 \xi_w S_w \left(C_r + C_w \right) \frac{\partial P}{\partial t} + \phi_0 \xi_w \frac{\partial S_w}{\partial t} + \nabla \left(\xi_w \overrightarrow{W}_w \right) = -\overrightarrow{q}_w. \tag{14}$$

2. Определение концентраций компонентов в фазах путем решения исходной системы уравнений с помощью метода Ньютона — Рафсона. Система уравнений, описывающая фазовое равновесие и материальный баланс многокомпонентной системы, имеет вид:

$$f_i^o = f_i^g$$
, $z_i = x_i L + y_i V$, $i = 1, ...N_c$, $L + V = 1$, $\sum_{i=1}^{N_c} z_i = 1$, $\sum_{i=1}^{N_c} x_i = 1$, $\sum_{i=1}^{N_c} y_i = 1$, (15)

где L и V — мольные доли нефтяной и газовой фаз соответственно; $f_i^{\ o}$ и $f_i^{\ g}$ — летучести компонентов в нефтяной и газовой фазах; x_i и y_i — концентрация компонентов в нефтяной и газовой фазах.

Летучести f_i^o и f_i^g рассчитываются исходя из параметров уравнения состояния и коэффициентов сверхсжимаемости [5–6, 8–12].

При заданных z_i система (15) имеет $2N_c+2$ неизвестных и $2N_c+3$ уравнений (без учета соотношения $\sum_{i=1}^{N_c} z_i = 1$). В данной задаче избыточное количество уравнений, следовательно, какое-то одно из них можно отбросить.

Для решения системы (15) можно использовать итерационный метод Ньютона — Рафсона с минимумом переменных. Метод имеет квадратичную сходимость в окрестности решения, но для его сходимости нужна гарантия попадания в достаточно малую окрестность. В этом методе используется тот факт, что часть соотношений системы имеет линейный вид. Все переменные делятся на итерационные (независимые), которые корректируются в ходе итерационного процесса, и зависимые переменные, вычисляемые с помощью линейных соотношений.

Для решения задачи разложения смеси заданного состава на равновесные жидкую и паровую фазы в качестве независимых переменных выбираются V и y_i , $i=2,...,N_c$ (так называемый метод VY -итераций) для двухфазных систем с преобладанием жидкой фазы (L>V). Для двухфазных систем с преобладанием паровой фазы (V>L) рекомендуют в качестве независимых переменных выбирать L и x_i , $i=2,...,N_c$ (так называемый метод LX -итераций). Аналогичный подход к определению давлений насыщения и конденсации приводит к итерационным процедурам относительно переменных P, y_i (PY-итерации) и P, x_i (PX-итерации) соответственно. В этих методах на каждой итерации необходимо решать систему линейных алгебраических уравнений порядка N_c . Следует подчеркнуть, что этот метод хорошо сходится и вблизи критической точки.

Опишем подробнее данный метод в его применении к решению задачи разложения смеси заданного состава на равновесные жидкую и паровую фазы при фиксированных давлении и температуре. Пусть в качестве независимых (итерационных) выбраны переменные V и y_i , $i=2,...,N_c$. Остальные переменные можно выразить через итерационные:

$$y_1 = 1 - \sum_{i=2}^{N_c} y_i \; ; \; L = 1 - V \; ; \; x_i = (z_i - y_i V)/L \; , \; i = 1..N_c \; .$$
 (16)

Тогда относительно итерационных переменных получится система нелинейных уравнений:

$$\Phi_{i} = (y_{2}, ..., y_{N_{c}}, V) = \ln[f_{i}^{o}(x_{1}, ..., x_{N_{c}})] - \ln[f_{i}^{g}(y_{1}, ..., y_{N_{c}})] = 0, i = 1...N_{c}.$$
(17)

Линеаризация данной системы порождает матрицу Якоби, элементы которой с учетом ограничений (16) имеют вид:

$$\frac{\partial \Phi_{i}}{\partial y_{i}} = \sum_{k=1}^{N_{c}} \frac{\partial \ln(f_{i}^{o})}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{j}} - \sum_{k=1}^{N_{c}} \frac{\partial \ln(f_{i}^{g})}{\partial y_{k}} \frac{\partial y_{k}}{\partial y_{j}} = \frac{V}{L} \frac{\partial \ln(f_{i}^{o})}{\partial x_{1}} - \frac{V}{L} \frac{\partial \ln(f_{i}^{o})}{\partial x_{j}} + \frac{\partial \ln(f_{i}^{g})}{\partial y_{1}} - \frac{\partial \ln(f_{i}^{g})}{\partial y_{j}},$$

$$i = 1, \dots, N_{c}; \quad j = 2, \dots, N_{c}; \quad (18)$$

$$\frac{\partial \Phi_{i}}{\partial V} = \sum_{k=1}^{N_{c}} \frac{\partial \ln(f_{i}^{o})}{\partial x_{k}} \frac{\partial x_{k}}{\partial V} - \sum_{k=1}^{N_{c}} \frac{\partial \ln(f_{i}^{g})}{\partial y_{k}} \frac{\partial y_{k}}{\partial V} = -\frac{1}{L} \sum_{k=1}^{N_{c}} \frac{\partial \ln(f_{i}^{o})}{\partial x_{k}} (y_{k} - x_{k}), \ i = 1, ..., N_{c}.$$

$$(19)$$

Реализация метода Ньютона — Рафсона с минимумом переменных сводится к итерационной схеме:

Использование метода Ньютона — Рафсона при многокомпонентном математическом моделировании разработки месторождений жидких и газообразных углеводородов

$$\sum_{j=2}^{N_c} \left(\frac{\partial \boldsymbol{\Phi}_i}{\partial \boldsymbol{y}_j} \right)^k \left(\boldsymbol{y}_j^{k+1} - \boldsymbol{y}_j^k \right) + \left(\frac{\partial \boldsymbol{\Phi}_i}{\partial \boldsymbol{V}} \right)^k \left(\boldsymbol{V}^{k+1} - \boldsymbol{V}^k \right) = -\boldsymbol{\Phi}_i, \ i = 1, ..., N_c.$$
 (20)

Окончание итерационного процесса выполняется по степени близости к нулю невязки, рассчитанной по значениям переменных на очередной итерации:

$$\left|\Phi_{i}^{k}\right| \leq \varepsilon, \ i = 1, \dots, N_{c}, \tag{21}$$

где ε — малое число.

Начальное приближение для итерационного процесса получается из решения следующих уравнений с использованием оценки для констант равновесия:

$$K_{i} = \frac{1}{P_{ri}} \exp \left[5,37(1 - \omega_{i}) \left(1 - \frac{1}{T_{ri}} \right) \right], \quad y_{i} = \frac{K_{i} z_{i}}{1 + (K_{i} - 1)V}, \quad \sum_{i=1}^{N_{c}} \frac{z_{i}(K_{i} - 1)}{1 + V(K_{i} - 1)} = 0,$$
(22)

где $K_i = y_i/x_i$ — константа равновесия компонента i; ω_i — ацентрический фактор компонента i; P_{ri} и T_{ri} — приведенное давление и температура для компонента i.

3. Пример использования рассмотренной модели. В качестве примера использования рассмотренной математической модели приведем моделирование попеременной закачки газа и воды для элемента девятиточечной системы заводнения (рис. 1), одного из месторождений Западной Сибири. Пласт представлен отложениями ачимовской свиты.

Сетка модели прямоугольная, блочноцентрированная. Количество ячеек по осям X-Y-Z равно 21-21-12 штук соответственно, размеры ячеек равны 50-50-1,7 м соответственно. Расстояние между добывающими скважинами 500 м. Эффективная толщина пласта 20 м. Эффективная нефтенасыщенная толщина 10 м. По толщине пласт неоднороден по проницаемости и пористости. Поле проницаемости пласта характеризуется параметрами:

- математическое ожидание 71,1 мД;
- стандартное отклонение 75,6 мД;
- минимум 7,7 мД;
- максимум 230,3 мД.

Рис. 1. Элемент девятиточечной системы расстановки скважин

Поле пористости характеризуется параметрами:

- математическое ожидание 0,149 д. ед.;
- стандартное отклонение 0,013 д. ед.;
- минимум 0,129 д. ед.;
- максимум 0,168 д. ед.

Коэффициент анизотропии проницаемости по вертикали 0,1 д. ед. Перфорирована верхняя, нефтенасыщенная часть пласта.

Начальная пластовая температура 92,2 °C, начальное пластовое давление 255 ат. Вязкость нефти 0,62 сПз, объемный коэффициент нефти 1,16 ед., плотность нефти 847 кг/м³. Объемный коэффициент воды 1,02 ед. Плотность газа 1,17 кг/нм³. Давление насыщения нефти газом 98 ат., растворимость газа в нефти 65 м³/м³. Для моделирования PVT-свойств и фазовых равновесий использовано уравнение Пенга — Робинсона. При расчете используются следующие компоненты:

- 1) N_2 молекулярная масса 28,013
- 2) СО₂ молекулярная масса 44,01
- 3) C₃ молекулярная масса 44,097
- 4) C₄ молекулярная масса 58,124
- 5) H₂O

и псевдокомпоненты:

- 1) $C_1 + C_2 -$ молекулярная масса 17,693
- 2) $C_5 + C_6 + C_7$ молекулярная масса 81,739
- 3) C₈₊ молекулярная масса 209,512

Относительные фазовые проницаемости и капиллярное давление в системе воданефть приведены на рис. 2, а в системе нефть-газ — на рис. 3. Капиллярным давлением в системе нефть-газ пренебрегаем.

Внешние границы модели считаются непроницаемыми (элемент симметрии).

Добывающие скважины управляются дебитом жидкости. Скважины работают с различным дебитом жидкости. Нагнетательные скважины управляются закачкой. Дебиты и закачка соответствуют фактическим данным. Скважины в углу модели имеют дебит жидкости 1/4 от фактического, а скважины на гранях — 1/2 от фактического. Вода и газ закачиваются по очереди циклами. Длительность периода закачки одной фазы равна одному месяцу. Расход газа 28 тыс. нм³/сут. Расход воды 140 м³/сут. Закачивается растворенный в нефти газ после сепарации или сухой газ (табл. 1). Начальные мольные концентрации компонентов в углеводородной системе приведены в табл. 2.

Состав закачиваемого газа (мольные концентрации)

Таблица 1

	N_2	CO_2	$C_1 + C_2$	C ₃	C_4	$C_5 + C_6 + C_7$	C_{8+}
Попутный газ	0,0191	0,0	0,9412	0,0122	0,0169	0,0106	0,0
Сухой газ	0,0	0,0	1,0	0,0	0,0	0,0	0,0

Таблица 2

Начальные мольные концентрации компонентов в углеводородной системе

	N_2	CO_2	$C_1 + C_2$	\mathbb{C}_3	\mathbb{C}_4	$C_5 + C_6 + C_7$	C_{8+}
Углеводородная система	0,0039	0,0053	0,2615	0,0603	0,0679	0,1476	0,4535

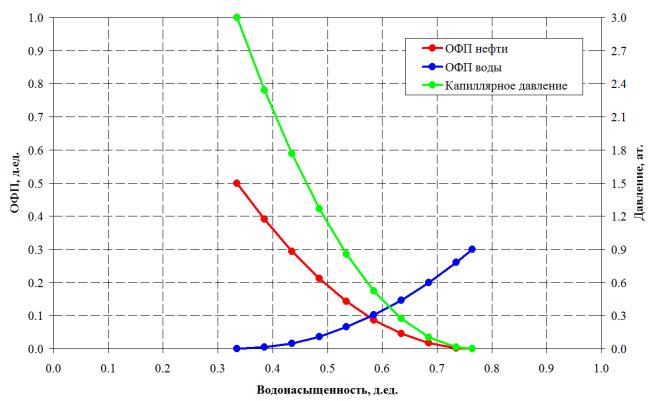


Рис. 2. Относительные фазовые проницаемости (ОФП) и капиллярное давление в системе вода-нефть

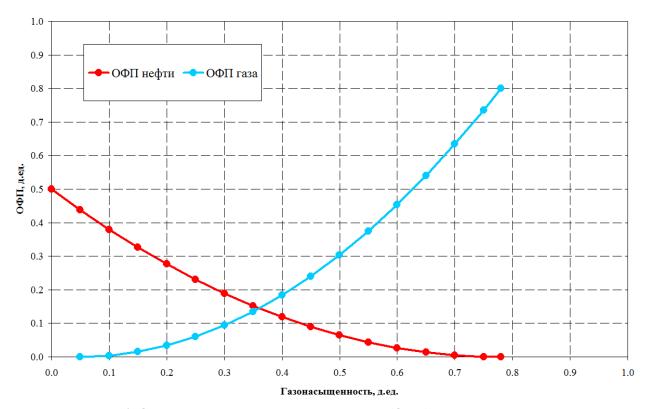


Рис. 3. Относительные фазовые проницаемости (ОФП) в системе нефть-газ

Ограничения на работу добывающих скважин следующие:

- 1. Минимальный дебит нефти 1 м³/сут.
- 2. Максимальная обводненность 98 %
- 3. Максимальный газовый фактор $1~000~\text{нм}^3/\text{м}^3$

Срок разработки – не более 30 лет.

Всего было рассмотрено 2 варианта в зависимости от рабочего агента.

Вариант 1. Рабочий агент – попутный газ и вода.

Вариант 2. Рабочий агент – сухой газ и вода.

На рис. 4—8 приведены показатели разработки по группе добывающих скважин: рис. 4 — суммарная добыча нефти; рис. 5 — накопленная добыча нефти; рис. 6 — газовый фактор; рис. 7 — обводненность продукции; рис. 8 — мольная концентрация компонентов $C_5 + C_6 + C_7$ и C_{8+} в добываемой нефти.

Резкие изменения параметров на рис. 4—8 объясняются послойным прорывом закачиваемого газа и воды в скважины, а также отключением некоторых добывающих скважин из-за достижения экономических ограничений.

К концу 30-летнего периода в эксплуатации остается еще 2 добывающие скважины для обоих вариантов. При близких дебитах нефти и почти одинаковой накопленной добыче нефти вариант с закачкой сухого газа характеризуется большим значением обводненности и газового фактора. Значит вариант с закачкой попутного газа и воды дает лучшие показатели разработки, что косвенно говорит о корректности модели.

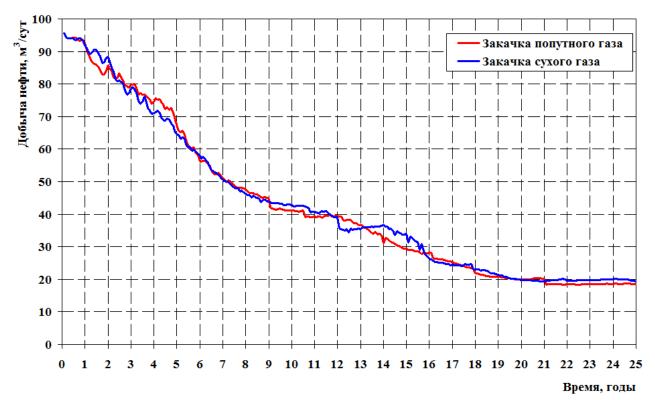


Рис. 4. Суммарная добыча нефти по группе скважин

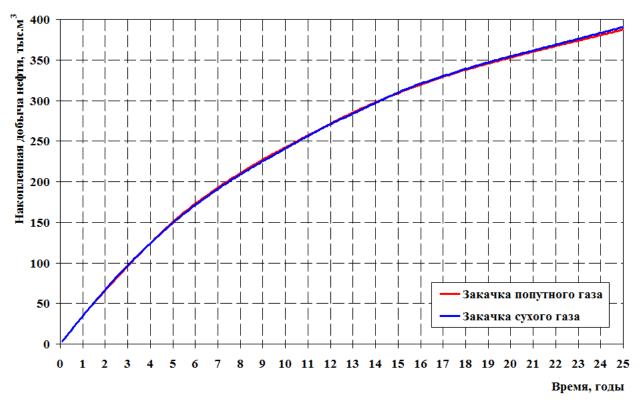


Рис. 5. Накопленная добыча нефти по группе скважин

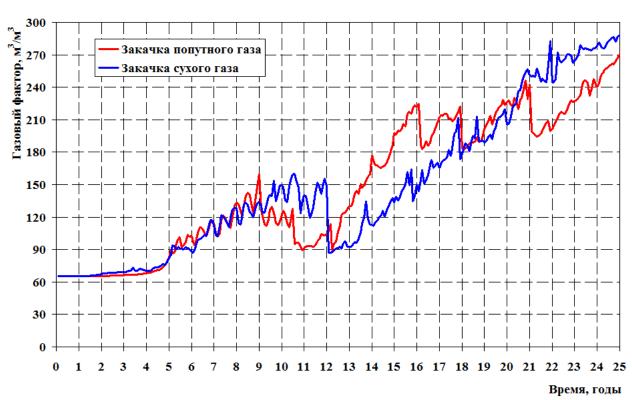


Рис. 6. Газовый фактор по группе скважин

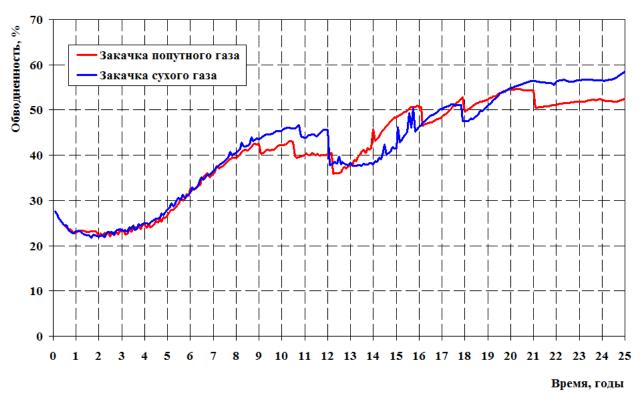


Рис. 7. Обводненность по группе скважин

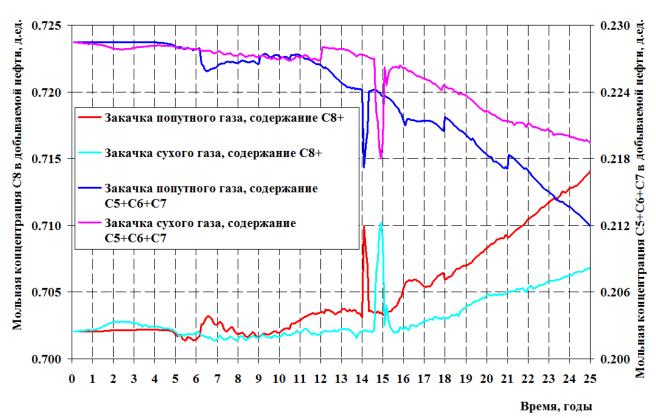


Рис. 8. Мольная концентрация некоторых компонентов в добываемой нефти по группе скважин

Заключение. Реализована бета-версия симулятора ДЛЯ математического моделирования многокомпонентной фильтрации при разработке месторождений жидких и газообразных углеводородов. Приведен метод определения концентраций компонентов в фазах путем решения исходной системы уравнений фазовых равновесий и материального баланса смеси с помощью метода Ньютона – Рафсона. Следует подчеркнуть, что этот метод хорошо сходится даже вблизи критической точки. Рассмотренный пример использования метода ДЛЯ моделирования водогазового воздействия реальном месторождении Западной Сибири косвенно говорит о корректности модели.

Работа выполнена при поддержке гранта РФФИ 16-29-15105 офи м.

Литература

- 1. Coats K. H. An Equation of State Compositional Model # Soc Pet Eng J. 1980. Oct. P. 363–376.
- 2. Ngiem L. X., Fong D. K., Aziz K. Compositional Modeling with an Equation of State // Soc Pet Eng J. 1981. Dec. P. 687–698.
- 3. Coats K. H., Thomas L. K., Pierson R. G. Compositional and Black Oil Reservoir Simulation // SPE Reservoir Evaluation & Engineering. August. 1998. P. 372–379.
- 4. Kazemi H., Vestal C. R., Shank G. D. An Efficient Multicomponent Numerical Simulator // Soc Pet Eng J. 1978. Oct. P. 355–368.
- 5. Афанаскин И. В., Королев А. В., Вольпин С. Г. и др. Модель многофазной многокомпонентной фильтрации для проектирования разработки месторождений углеводородов // Нефтепромысловое дело. 2017. № 2. С. 5–12.
- 6. Гуревич Г. Р., Брусиловский А. И. Справочное пособие по расчету фазового состояния и свойств газоконденсатных смесей. М.: Недра, 1984. 264 с.
- 7. Закиров С. Н.. Сомов Б. Е., Гордон В. Я. и др. Многомерная и многокомпонентная фильтрация. М.: Недра, 1988. 335 с.
- 8. Муркес М. Н. Расчет фазовых равновесий при численном решении задач фильтрации многокомпонентных смесей в процессе разработки углеводородных залежей // Сб. тр. ВНИИ. 1985. № 91. С. 32–37.
- 9. РД 39-1-579-81. Руководство по расчету фазовых превращений газоконденсатных и водонефтегазоконденсатных систем и свойств фаз на ЭВМ.
- 10. Программа для моделирования процессов разработки нефтегазовых месторождений tNavigator версия 3.0 : технич. рук. М. : Rock Flow Dynamics, 2009. 782 с.
- 11. Афанаскин И. В., Вольпин С. Г., Королев А. В. Использование метода последовательных приближений при композиционном моделировании разработки месторождений углеводородов для определения концентраций компонентов // Тр. НИИСИ РАН. 2018. Т. 8. № 2.
- 12. Королев А. В. Моделирование фазовых равновесий многокомпонентных систем с использованием уравнений состояния // Сб. тр. ВНИИ. 1984. № 87. С. 78–87.