УДК 61:51 DOI 10.34822/1999-7604-2019-3-43-51

ПОСТРОЕНИЕ КОМПЛЕКСНОЙ ОЦЕНКИ СИСТЕМЫ ЗДРАВООХРАНЕНИЯ РЕГИОНА С ПОМОЩЬЮ НЕЧЕТКОГО МОДЕЛИРОВАНИЯ

Т. В. Алексейчик, Е. А. Халитов, М. Б. Стрюков

Ростовский государственный экономический университет (РИНХ), mstryukoy@mail.ru, alekseychik48@mail.ru, karmagen9@gmail.com

В статье предложена методика оценки региональной системы здравоохранения с использованием эконометрических методов и теории нечетких множеств. Новизной исследования является построение нечетких прогнозов основных показателей, характеризующих состояние исследуемой системы здравоохранения, с использованием трендовых моделей. Кроме того, предлагается методика построения комплексной числовой оценки состояния системы здравоохранения региона с использованием стандартного нечеткого трехуровнего [0, 1]-классификатора.

Ключевые слова: трендовые модели, нечеткий прогноз, лингвистическая переменная, функция принадлежности.

COMPREHENSIVE ASSESSMENT CONSTRUCTION OF HEALTH SYSTEM OF REGION USING FUZZY MODELING

T. V. Alekseychik, E. A. Khalitov, M. B. Stryukov

Rostov State University of Economics, mstryukoy@mail.ru, alekseychik48@mail.ru, karmagen9@gmail.com

The article proposes a method for assessing the regional health care system using the econometric approach and fuzzy set theory. The scientific novelty of the study is the construction of fuzzy predictions of the main indicators characterizing the state of the studied health care system, using trend models. Furthermore, using a standard fuzzy three-level [0,1]-classifier, a method of constructing a complex numerical assessment of the health system of the region is proposed.

Keywords: trend models, fuzzy prediction, linguistic variable, membership function.

Стратегической целью социально-экономического развития Ростовской области является рост человеческого потенциала и качества жизни населения региона, что впоследствии будет способствовать сохранению и укреплению здоровья населения области, сокращению прямых и косвенных потерь общества за счет снижения заболеваемости и смертности населения, улучшению социально-демографической ситуации области, в том числе увеличению ожидаемой продолжительности жизни населения. В связи с этим анализ системы здравоохранения с целью разработки рекомендаций по улучшению ее состояния имеет большое значение.

Для характеристики состояния системы здравоохранения региона были выбраны следующие основные показатели: численность населения Ростовской области (тысяч человек); численность врачей всех специальностей (человек); численность среднего медицинского персонала (человек); число больничных коек круглосуточных стационаров (штук); число амбулаторно-поликлинических учреждений (единиц); заболеваемость населения по всем болезням (тысяч человек); рождаемость (человек); смертность (человек); заболеваемость ВИЧ (человек); заболеваемость злокачественными новообразованиями (тысяч человек); заболеваемость активным туберкулезом (человек).

Информационно-эмпирической базой исследования являются сборники, описывающие основные показатели социально-экономического положения по Ростовской области за 2006–2016 гг., а также за 2017 год [1].

Построение нечеткого прогноза основных показателей состояния системы здравоохранения на основе их трендовых моделей

Посредством эконометрических методов, в данной работе для основных показателей, характеризующих состояние системы здравоохранения за 2006–2016 гг., были построены трендовые модели с использованием программного обеспечения *Eviews* [2–5]. Затем с их помощью определены теоретические значения показателей, которые применяются в дальнейшем для определения абсолютных погрешностей этих показателей. Далее для соответствующих абсолютных погрешностей вычислены относительные погрешности показателей и для них построены трендовые модели.

На основе трендовых моделей показателей были выполнены их прогнозы на 2017—2020 гг., которые описывают средние ожидаемые значения исследуемого показателя на соответствующий период.

С использованием трендовых моделей погрешностей были вычислены их теоретические значения, которые позволили построить нечеткий прогноз для исследуемых показателей, отражающий оптимистический и пессимистический прогнозы.

Проиллюстрируем предложенную методику построения нечеткого прогноза для показателей численности врачей всех специальностей (человек) и численности среднего медицинского персонала (человек).

Введем обозначения:

DOCTOR – численность врачей всех специальностей;

DOCTORP – относительная погрешность численности врачей всех специальностей;

NURSE – численность среднего медицинского персонала;

NURSEP — относительная погрешность численности среднего медицинского персонала; t — время;

 R^2 – коэффициент детерминации.

Запишем трендовые модели для показателя численности врачей всех специальностей:

$$DOCTOR = -0.5436t^3 + 16737,8821; R^2 = 0.802.$$
 (1)

Используя уравнение (1), определим теоретические значения показателя, а также его абсолютную и относительную погрешности (табл. 1).

Таблица 1
Теоретические значения показателя DOKTOR и его абсолютная и относительная погрешности

Годы	t (время)	Реальные данные (чел.)	Теоретические данные (чел.)	Абсолютная по- грешность (чел.)	Относительная погрешность по модулю (%)
2006	1	16544	16737,33851	193,3385	1,168632
2007	2	17186	16733,53317	- 452,467	2,632764
2008	3	16174	16723,20439	549,2044	3,3956
2009	4	16316	16703,09045	387,0905	2,372459
2010	5	16487	16669,92964	182,9296	1,109539
2011	6	16960	16620,46022	- 339,54	2,002003
2012	7	17136	16551,42048	- 584,58	3,411412
2013	8	16395	16459,54871	64,54871	0,39371
2014	9	16278	16341,58318	63,58318	0,390608
2015	10	15950	16194,26217	244,2622	1,531424
2016	11	15820	16014,32396	194,324	1,228344

На основе данных относительной погрешности табл. 1 построим для нее трендовую модель:

$$DOCTORP = -0.2159COS(t^2) \times t + 2.2277; R^2 = 0.745.$$
 (2)

Используя уравнения (1) и (2), определим прогнозные значения показателя и их погрешности на 2017–2020 гг. (табл. 2).

Годы	Прогнозные значения показателя (чел.)	Прогнозные значения погрешности показателя (%)
2017	15798,50683	-0,02889
2018	15543,54907	-0,01307
2019	15246,18894	1,192718
2020	14903,16475	1,038321

Используя трендовые модели показателя и его погрешности, построим его нечеткий прогноз (рис. 1).

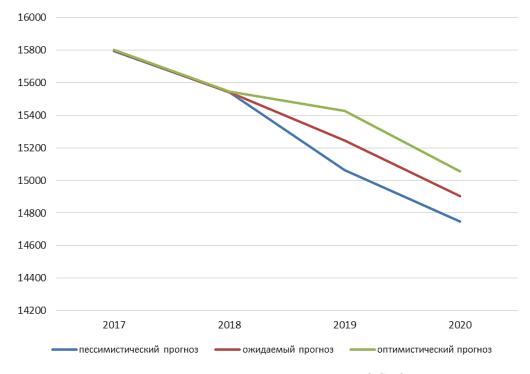


Рис. 1. Нечеткий прогноз показателя *DOCTOR*

Аналогичные построения выполним для показателя численности среднего медицинского персонала и его относительной погрешности – уравнения (3), (4), табл. 3 и 4, рис. 2:

$$NURSE = 415,9994\cos(t) + 38805,2585; R2 = 0,744.$$
 (3)

$$NURSEP = 1,3226\cos(t^2) \times \sin(t^2) + 1,3393; R^2 = 0,738.$$
 (4)

Таблица 3

Теоретические значения показателя **NURSE** и его абсолютная и относительная погрешности

Годы	t (время)	Реальные данные (чел.)	Теоретические данные (чел.)	Абсолютная погрешность (чел.)	Относительная погрешность по модулю (%)
2006	1	39015	39030,024	15,024	0,038508
2007	2	39899	38632,1417	-1266,86	3,175163

Окончание табл. 3

Годы	t (ppoyed)	Реальные	Теоретические	Абсолютная	Относительная погреш-		
Годы <i>t</i> (время)		данные (чел.)	данные (чел.)	погрешность (чел.)	ность по модулю (%)		
2008	3	38339	38393,42223	54,42223	0,14195		
2009	4	39171	38533,34317	-637,657	1,62788		
2010	5	39229	38923,26186	-305,738	0,779368		
2011	6	39858	39204,68885	-653,311	1,639097		
2012	7	39524	39118,88146	-405,119	1,024994		
2013	8	39113	38744,73062	-368,269	0,941552		
2014	9	38103	38426,22888	323,2289	0,848303		
2015	10	38585	38456,20527	-128,795	0,333795		
2016	11	37866	38807,09964	941,0996	2,485342		

Таблица 4 Прогнозные значения показателя NURSE и его погрешности

Годы	Прогнозные значения показателя (чел.)	Прогнозные значения погрешности показателя (%)
2017	39156,30132	0,773612
2018	39182,7559	0,703591
2019	38862,14116	1,764901
2020	38489,22881	0,8875

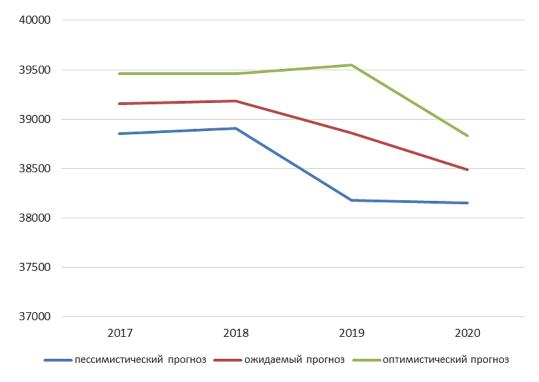


Рис. 2. Нечеткий прогноз показателя NURSE

Для всех остальных показателей были выполнены аналогичные построения.

На основании проведенных исследований были сделаны следующие прогнозы состояния системы здравоохранения региона на 2017–2020 гг.:

- 1. Заболеваемость населения по всем болезням в прогнозируемом периоде показывает небольшой рост с 2017–2019 гг., но в 2020 году наблюдается падение до значений 2018 года.
 - 2. Рождаемость показывает стабильный рост во всем прогнозируемом периоде.
- 3. Смертность отражает рост во всем прогнозируемом периоде и перекрывает рождаемость.
- 4. Численность врачей всех специальностей убывает во всем периоде с 2017–2020 гг., что косвенно может являться причиной роста заболеваемости и смертности.

- 5. Численность среднего медицинского персонала так же убывает во всем периоде с 2017–2020 гг.
- 6. Число больничных коек круглосуточных стационаров в прогнозируемом периоде показывает небольшой рост с 2018–2019 гг., но в 2020 году наблюдается падение до значений 2018 года, что также может являться причиной роста заболеваемости и смертности.
 - 7. Заболеваемость ВИЧ показывает рост во всем прогнозируемом периоде.
- 8. Заболеваемость злокачественными новообразованиями показывает существенное снижение во всем прогнозируемом периоде.
- 9. Заболеваемость активным туберкулезом почти не изменяется в прогнозируемом периоде, но границы прогноза расширяются, что может свидетельствовать о возможных существенных расхождениях с ожидаемым прогнозом в будущем.
- 10. Число амбулаторно-поликлинических учреждений существенно не изменяется во всем прогнозируемом периоде, но в сравнении с 2017 годом показывает небольшой рост в 2020 году.
- 11. Численность населения Ростовской области снижается во всем прогнозируемом периоде, что может являться следствием повышения смертности.

Построение комплексной оценки состояния системы здравоохранения на основе теории нечетких множеств. Расчет комплексной количественной оценки осуществляется с использованием стандартного нечеткого трехуровневого [0,1]-классификатора [6–8]. Оценка была проведена на основе годовых данных Росстата по Ростовской области, характеризующих состояние здравоохранения региона за 2006–2016 гг. [1], которые представлены в табл. 5.

Таблица 5 Показатели системы здравоохранения региона за 2006–2016 гг.

	Наблюдаемые данные										
Показатели	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Численность населения	4 332,4	4 314,6	4 297,6	4 292,5	4 284,8	4 275,2	4 260,6	4 254,6	4 245,5	4 242,1	4 236
Заболеваемость населения по всем болезням	3 499,1	3 461,3	3 373,9	3 477,2	3 382,9	3 486,3	3 487,1	3 472,4	3 481,7	3 396,3	3 434,7
Смертность	66 634	63 835	63 827	62 296	62 879	60 840	59 598	58 509	59 740	58 763	58 718
Численность врачей всех специальностей	16 544	17 186	16 174	16 316	16 487	16 960	17 136	16 395	16 278	15 950	15 820
Численность средне- го медицинского пер- сонала	39 015	39 899	38 339	39 171	39 229	39 858	39 524	39 113	38 103	38 585	37 866
Число больничных коек круглосуточных стационаров	43 905	43 569	39 632	38 733	37 271	38 684	38 219	37 884	34 197	34 473	34 537
Заболеваемость ВИЧ (человек)	2 914	2 917	3 185	3 590	4 082	4 089	6 841	4 889	5 347	6 670	8 059
Заболеваемость злокачественными новообразованиями	15,10	15,50	15,80	15,80	15,90	16,10	16,71	15,29	14,86	14,74	15,07
Заболеваемость активным туберкулезом	3 121	3 248	3 175	3 044	3 020	2 793	2 542	2 235	1 981	1 940	1 691
Численность родив- шихся	40 876	43 606	45 876	46 120	46 607	46 519	49 935	49 569	51 392	51 081	49 038
Число амбулаторно- поликлинических учреждений	605	627	528	498	494	495	495	480	524	528	527

Для анализа состояния системы здравоохранения с помощью теории нечетких множеств указанные показатели необходимо нормировать, например, как отношение значения показателей к наибольшему значению соответствующего показателя.

Алексейчик Т. В., Халитов Е. А., Стрюков М. Б. Построение комплексной оценки системы здравоохранения региона с помощью нечеткого моделирования

Предложенные показатели здравоохранения имеют различную значимость. В связи с этим предлагается ввести весовые коэффициенты по правилу Фишберна [7, 8], причем нумерация временных периодов ведется в обратном порядке (т. е. в рассматриваемом случае первый период – 2016 год, а последний – 2006 год):

$$k_i = \frac{2(n-i+1)}{(n+4)n},\tag{5}$$

где n = 11; i = 1, 2, ..., 10, 11.

По формуле (5) определим весовые коэффициенты, причем i=1 соответствует значению x_i для 2016 года, i=11 соответствует значению x_i для 2006 года. Тогда расчет нормированных значений x_{F_i} исследуемых показателей с учетом их значимости производится по формуле:

$$x_{F_i} = \sum_{i=1}^n k_i \times x_i. \tag{6}$$

По формуле (6) вычислим нормированные значения показателей x_{F_i} , $i=1,\,2,\,...,\,10,\,11$ с учетом значимости периодов.

Величины x_i являются числовыми значениями нечетких переменных с универсальным множеством (носителем) в виде отрезка [0,1]. Сопоставим им лингвистические переменные G_i , терм-множества которых $-G_i = \{G_{i1}, G_{i2}, G_{i3}\}, i = 1, 2, 3$ — состоят из следующих термов: G_{i1} — низкий уровень показателя» G_{i2} — средний уровень показателя; G_{i3} — высокий уровень показателя.

Наблюдаемые показатели были разделены на 2 группы по виду влияния на систему здравоохранения: позитивные и негативные, которые будем считать в каждой группе равноценными.

Функции принадлежности подмножеств негативных показателей терм-множества G отражают, что чем ближе значение к единице, тем хуже (табл. 6).

Функции принадлежности подмножеств позитивных показателей терм-множества G отражают, что чем ближе значение к единице, тем лучше (табл. 7).

Таблица 6 Функции принадлежности подмножеств негативных показателей терм-множества G

T ермы G_i	Функция принадлежности нечетких множеств G_i				
G_1 – благополучное	$\mu_1(\mathbf{x}) = \begin{cases} 1, & 0 \le x < 0, 2\\ 2 - 5x, & 0, 2 \le x < 0, 4 \end{cases}$				
G_2 — относительно благополучное	$\mu_2(x) = \begin{cases} 5x - 1, & 0.2 \le x < 0.4 \\ 1, & 0.4 \le x < 0.6 \\ 4 - 5x, & 0.6 \le x < 0.8 \end{cases}$				
$G_{\scriptscriptstyle 3}$ – неблагополучное	$\mu_3(\mathbf{x}) = \begin{cases} 5x - 3, & 0.6 \le x < 0.8 \\ 1, & 0.8 \le x \le 1 \end{cases}$				

Таблица 7 Функции принадлежности подмножеств позитивных показателей терм-множества ${\pmb G}$

$oxed{Tepmы} G_i$	Функция принадлежности нечетких множеств G_i
$oldsymbol{G}_1$ — неблагополучное	$\mu_1(\mathbf{x}) = \begin{cases} 1, & 0 \le x < 0, 2\\ 2 - 5x, & 0, 2 \le x < 0, 4 \end{cases}$
G_2 – относительно благополучное	$\mu_2(x) = \begin{cases} 5x - 1, & 0.2 \le x < 0.4 \\ 1, & 0.4 \le x < 0.6 \\ 4 - 5x, & 0.6 \le x < 0.8 \end{cases}$
G_3 – благополучное	$\mu_3(\mathbf{x}) = \begin{cases} 5x - 3, & 0.6 \le x < 0.8 \\ 1, & 0.8 \le x \le 1 \end{cases} \mu$

Определим значимость исследуемых негативных показателей и, используя табл. 6, построим термы лингвистической переменной для этих показателей (табл. 8).

Таблица 8 Веса и значения функций принадлежности для негативных показателей

Нумерация показателей по степени важности	Показатели	Веса показателей	Значения	Термы лингвистической переменной				
	Hokasaresin	(r_i)	показателей	G_{1}	G_2	G_3		
1	\mathcal{X}_{F_1}	1/5	0,985333025	0	0	1		
2	\mathcal{X}_{F_2}	1/5	0,902908334	0	0	1		
3	\mathcal{X}_{F_3}	1/5	0,692013822	0	0,53993089	0,46006911		
4	\mathcal{X}_{F_4}	1/5	0,923961337	0	0	1		
5	\mathcal{X}_{F_5}	1/5	0,72156292	0	0,3921854	0,6078146		

Правило перехода от значений показателей x_i (i=1,2,3,4,5) к весам термов лингвистической переменной γ – «комплексная оценка состояния здравоохранения» имеет вид:

$$p_l = \sum_{i=1}^{5} r_i \times \mu_{il}(x_i), i = 1, ..., 5; l = 1, 2, 3.$$
 (7)

Тогда значение самой переменной γ определяется формулой:

$$\gamma = \sum_{k=1}^{5} p_k \times \bar{g}_k, \tag{8}$$

где \bar{g}_k — узловые точки, т. е. середины промежутков, являющихся носителями термов \bar{g}_1 = 0, 2, \bar{g}_2 = 0, 5, \bar{g}_3 = 0, 8.

Согласно формуле (7) веса термов лингвистической переменной с учетом значимости показателей первой группы системы здравоохранения равны:

$$\begin{aligned} p_1 &= 0, \quad p_2 = 0.5399 \times \frac{1}{5} + 0.3922 \times \frac{1}{5} = 0.1864, \\ p_3 &= 1 \times \frac{1}{5} + 1 \times \frac{1}{5} + 1 \times \frac{1}{5} + 0.4601 \times \frac{1}{5} + 0.6078 \times \frac{1}{5} = 0.8136. \end{aligned}$$

Алексейчик Т. В., Халитов Е. А., Стрюков М. Б. Построение комплексной оценки системы здравоохранения региона с помощью нечеткого моделирования

Используя формулу (8), определим комплексную оценку состояния первой группы показателей системы здравоохранения:

$$\gamma_1 = 0.1864 \times 0.5 + 0.8136 \times 0.8 = 0.7441.$$

Полученная оценка соответствует в большей степени неблагоприятному развитию первой группы системы здравоохранения.

Определим значимость исследуемых позитивных показателей и, используя табл. 7, построим термы лингвистической переменной для позитивных показателей (табл. 9).

 Таблица 9

 Веса и значения функций принадлежности для позитивных показателей

Нумерация показателей	Показатели	Веса показа-	Значения показателей	Термы лингвистической переменной			
по степени влияния	1	телей (r_i)	показателеи	G_1	G_2	G_3	
1	\mathcal{X}_{F_1}	1/6	0,983383484	0	0	1	
2	\mathcal{X}_{F_2}	1/6	0,952176543	0	0	1	
3	x_{F_3}	1/6	0,97241064	0	0	1	
4	\mathcal{X}_{F_4}	1/6	0,837326114	0	0	1	
5	\mathcal{X}_{F_5}	1/6	0,949681474	0	0	1	
6	\mathcal{X}_{F_6}	1/6	0,820960804	0	0	1	

Согласно формуле (7) веса термов лингвистической переменной с учетом значимости показателей второй группы системы здравоохранения региона равны:

$$p_1 = 0$$
, $p_2 = 0$, $p_3 = 1 \times \frac{1}{6} + 1 \times \frac{1}{6} = 1$.

Используя формулу (8), определим комплексную оценку состояния второй группы показателей системы здравоохранения:

$$\gamma_2 = 1 \times 0, 8 = 0, 8.$$

Полученная оценка соответствует благополучному состоянию второй группы системы здравоохранения.

Комплексную оценку состояния обеих групп получим как среднее арифметическое оценок групп:

$$\gamma = \frac{0,7441 + 0,8}{2} = 0,772.$$

На ее основании можно сделать вывод, что система здравоохранения в целом находится в благополучном состоянии, но следует обратить внимание на профилактические мероприятия по борьбе с заболеваниями и на недостаточное количество врачей и среднего медицинского персонала.

Выводы и предложения. Анализ состояния системы здравоохранения помогает выявить ее слабые стороны и сделать наиболее точный прогноз ее развития.

Были проведены исследования, нацеленные на выявление слабых и сильных сторон системы здравоохранения Ростовской области за 2006–2016 гг. с использованием следующих методов:

- 1. Для каждого показателя с использованием эконометрических методов были построены трендовые модели, а также трендовые модели относительных погрешностей показателей.
- 2. На основании построенных трендовых моделей, был предложен метод построения нечеткого прогноза в виде интервала, отражающего оптимистический, пессимистический и ожидаемый прогнозы показателя.
- 3. На основании проведенных исследований был выполнен прогноз состояния системы здравоохранения региона на 2010–2017 гг.
- 4. Для получения количественной и качественной оценки состояния системы здравоохранения Ростовской области в целом предложено использовать теорию нечетких множеств с использованием треугольных нечетких чисел. Исследуемые показатели были разбиты на 2 группы: негативные и позитивные. Для качественной оценки каждого показателя была введена лингвистическая переменная «уровень показателя».

Оценка состояния первой группы соответствует неблагоприятному состоянию. Оценка второй группы соответствует благополучному состоянию.

Система здравоохранения в целом находится в благополучном состоянии.

На основании проведенного анализа различными методами можно сделать вывод, что наблюдаются хорошие долгосрочные перспективы развития системы здравоохранения региона, но необходимо уделить внимание организации профилактических мероприятий по борьбе с заболеваниями и увеличению количества врачей и среднего медицинского персонала в медицинских учреждениях региона. Также, по мнению авторов, рекомендуется увеличить число больничных коек круглосуточных стационаров и количество амбулаторнополиклинических учреждений.

Предложенная методика оценки состояния здравоохранения региона может быть применена для исследования любой отрасли региона.

Литература

- 1. POCCTAT. Российский статистический ежегодник. URL: http://www.gks.ru (дата обращения: 17.03.2019).
- 2. Елисеева И. И., Курышева С. В., Костеева Т. В. и др. Эконометрика / под ред. И. И. Елисеевой. М. : Финансы и статистика, 2007. 576 с.
- 3. Кремер Н. Ш., Путко Б. А. Эконометрика / под ред. проф. Н. Ш. Кремера. М. : ЮНИТИ-ДАНА, 2010. 311 с.
 - 4. Тихомиров Н. П., Дорохина Е. Ю. Эконометрика. М.: Экзамен, 2003. 512 с.
- 5. Танака Х. Анализ нечетких данных с помощью возможных линейных моделей, нечетких множеств и систем. 1987. № 24 (3). С. 363–375.
- 6. Андрейчиков А. В., Андрейчикова О. Н. Анализ, синтез, планирование решений в экономике. М.: Финансы и статистика, 2001. 368 с.
- 7. Стрюков М. Б., Сахарова Л. В., Алексейчик Т. В., Богачев Т. В. Методика оценки интенсивности сельскохозяйственного производства на основе теории нечетких множеств // Междунар. науч.-исследоват. журнал. 2017. N 7 (61). Ч. 3. С. 123–129.
- 8. Вовченко Н. Г., Сахарова Л. В., Алексейчик Т. В., Богачев Т. В. Методика оценки экологического природопользования в регионе на основе нечетко-множественного анализа статистических данных // Вестн. РГЭУ (РИНХ). 2018. № 2. С.116—123.