Preview

Proceedings in Cybernetics

Advanced search

Representations of Group of Motions of the Pseudo-Euclidean Plane and the Bessel Functions

Abstract

Many properties of Bessel functions with integer indices are related to the group of motions of the Euclidean plane. The replacement of the compact subgroup of Euclidean rotations by a noncompact subgroup of hyperbolic rotations and the proposed construction of representations lead to the study of the group properties of Bessel functions with arbitrary indices. The connections of Bessel functions with other special functions, most frequently encountered in applications: Hankel, MacDonald, Neumann, Euler Γ-functions and Β-functions, are found.

About the Authors

O. A. Dubovik
Surgut State University
Russian Federation


A. O. Dubovik
Surgut State University
Russian Federation


References

1. Виленкин Н. Я. Специальные функции и теория представления групп. М. : Наука, 1991. 576 с.

2. Vilenkin N. Ja., Klimuk A. U. Representation Theory and Special Functions: Recent Advances. Kluwer Acad. Publ, 1995. 511 p.

3. Vilenkin N. Ja., Klimuk A. U. Representation Theory and Special Functions. V. 1. Kluwer Acad. Publ, 1991. 610 p.

4. Гельфанд И. М., Граев М. И., Ретах В. С. Гипергеометрические функции над произвольным полем // УМН. 2004. Т. 59. № 5 (359). С. 29−100.

5. Baricz A. Generalized Bessel functions of the first kind. Springer, 2010. 227 p.

6. Bohra N., Ravichandran V. On confluent hypergeometric functions and generalized Bessel functions // Analysis. Math. 2017. V. 43. Is. 4. Р. 533–545.

7. Aomoto K., Kita M. Theory of hypergeometric functions. Springer, 2011. Р. 335.

8. Дубовик О. А. Представление группы конформных движений евклидова пространства и функции Лежандра на разрезе // Сиб. матем. журн. 1980. № 4. С. 45−49.

9. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. М. : Наука, 1973. 296 с.

10. Бейтмен Г., Эрдейи А. Таблицы интегральных преобразований. Т. 1. М. : Наука, 1969. 344 с.


Review

For citations:


Dubovik O.A., Dubovik A.O. Representations of Group of Motions of the Pseudo-Euclidean Plane and the Bessel Functions. Proceedings in Cybernetics. 2018;(3 (31)):51-57. (In Russ.)

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)