Preview

Proceedings in Cybernetics

Advanced search

NETWORK PORES MODEL

Abstract

The article describes the existing methods for constructing a model of the internal pore space of a core sample. A processing technique of tomographic analysis data is proposed for the purpose of constructing a multihole channel and pore system that can later serve as a basis for rapid calculations of the porosity and permeability of specimen based on the core sample analysis.

About the Authors

V. B. Betelin
System Research Institute, Russian Academy of Sciences, Lomonosov Moscow State University
Russian Federation


V. F. Nikitin
System Research Institute, Russian Academy of Sciences, Lomonosov Moscow State University
Russian Federation


N. N. Smirnov
System Research Institute, Russian Academy of Sciences, Lomonosov Moscow State University
Russian Federation


References

1. Kozeny J. Royal Academy of Science // Proc Class I. Vol. 136. Vienna, 1927. P. 127.

2. Carmen P. C. Fluid flow through granular beds // Trans Inst Chem. Vol. 15. Eng., London, 1937. Р. 150.

3. David P. Y. Network modeling of flow, storage and deformation in porous rocks. A dissertation submitted to the department of geophysics and the committee of graduate studies of Stanford university in the partial requirements for the degree of Doctor of Philosophy. August, 1984.

4. Willie M. R. J., Sprangler M. B. Application of electrical resistivity measurements to problem of fluid flow in porous media // Bull AAPG. 1952. Vol. 36. Р. 359.

5. Owen J. E. The resistivity of a fluid-filled porous body // Trans. AIME. 1952. Vol. 195. P. 169.

6. Fatt I. The network model of porous media // Trans. AIME. 1956. Vol. 207. P. 144.

7. Seeburger D. A pore space model for rock permeability and bulk modulus // J Geophys Res. 1984. Vol. 89. P. 527.

8. Kirkpatrick S. Percolation and conduction // Rev Mod Phys. 1973. Vol. 45. P. 574.

9. Rink M., Shopper J. R. Computations of network models of porous media // Geophys Prosp. 1968. Vol. 16. P. 277.

10. Koplik J. Note on permeability of random networks. Schlumberger : Doll preprint, 1982.

11. Greenberg R. J., Brace W. F. Archie’s law for rocks modeled by simple networks // J Geophys Res. 1969. Vol. 74. P. 2099.

12. Rose W. Studies of waterflood performance III. Use of network models. Ill // State Geol Surv Circ. 1957. Vol. 237. P. 1.

13. Nicholson D., Petropoulos J. H. Capillary models for porous media: III. Two-phase flow in a three-dimensional network with Gaussian radius distribution // J Phys. D: Appl. Phys. 1971. Vol. 4. P. 181.

14. Yuan H. H. The influence of pore coordination on petrophysical properties // SPE paper. 1981. Р. 10074.

15. Bakke S., Øren P. E. 3D-pore modelling of sandstones and flow simulations in the pore networks // SPE Journal. 1997. Vol. 2.

16. Кукаева С. А. Сегментация кровеносных сосудов по данным компьютерной томограммы : материалы XI Всерос. конф. Н. Новгород : Изд-во Нижегород. гос. ун-та, 2011. С. 186-189.

17. Silin D., Patzek T. Pore space morphology analysis using maximal inscribed spheres // Physica. 2006. A 371. P. 336-360. doi:10.1016/j.physa.2006.04.048.

18. Thomas A. O., Lokeswarappa K. G. Maximum ball skeleton object recovery. CSE-573 : CVIP Project, Dept. of CSE. Fall : State university of New York at Buffalo, 2005.

19. Hilditch C. J. Linear skeletons from square cupboards // Meltzer B., Michie D. eds. Machine Intelligence 4. Edinbourgh : Edinbourgh University Press, 1969. P. 403-420.


Review

For citations:


Betelin V.B., Nikitin V.F., Smirnov N.N. NETWORK PORES MODEL. Proceedings in Cybernetics. 2017;(4 (28)):19-30. (In Russ.)

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)