Neural signal processing systems with interdependent adaptation of components for noise immunity enhancement of radio communication system
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
The article considers an data transmision system upgrade. It is based on one of the spectrum extention methods of transmitted signal that is the frequency-hopping spread spectrum. Analysis of the data transmission systems development shows that the main trend of changes at a level of data processing and transmission is the qualitative complication of physical organization for realization of new methods of adaptive signal processing. The use of a cellular neural network with hysteresis to perform state analysis of available frequency channels is proposed to increase the security of transmitted information. The results of neural network functioning allow predicting possible occupancy of each available radio channel and the probability of jamming at the moment of information transfer at a certain carrier frequency. This information allows adjusting the pseudo-random sequence generator operation generating the frequency partitioning sequence of available wireless communication channel. The performance in the form of adaptive neuristor lines that process signals transmitted between neurons is proposed to increase efficiency of the cellular neural network functioning communication between neural elements. The neural network system is able to process information not only in neurons with hysteresis, but also in the space between neural elements, which allows modifying the behavior of a neural network depending on the dynamics of signal propagation between its elements. Further the issue of variable parameters control of the designed complex neural structure by means of the modified algorithm of diffusive iterative search is considered. Application of similar optimization strategy leads to formation of metaheuristics which is capable to perform successfully tuning and training of a neural network complex. Check of network ability to predict frequency intervals with the minimal interference has shown that the cellular network is capable of performing reorganization of working frequency with account for features of background noise occurrence and jamming support in available frequency channels.
About the Authors
S. O. StarkovRussian Federation
Yu. N. Lavrenkov
Russian Federation
References
1. Sklar B. Digital Communications, Fundamentals and Applications : 2nd edition. N. J. : Prentice-Hall Inc., Upper Saddle River, 2001. 1079 r.
2. Lavrenkov Yu. N. Adaptivnoe upravlenie chastotno-effektivnoi sistemoi peredachi informatsii na osnove neironnoi seti s opticheski svyazannymi elementami // Prikladnaya informatika. 2017. T. 12. № 5(71). S. 56-70.
3. Proakis J. G. Digital Communications : 4th edition. N.Y. : The McGraw-Hill companies Inc., 2000. 936 r.
4. Torrieri D. Principles of Spread Spectrum Communications systems. Springer Science + Business Media Inc., 2005. 444 r.
5. Peterson L., Ziemer R. E., Borth D. E. Introduction to Spread Spectrum Communications. N. J. : Prentice-Hall, 1995.
6. Rabunal J. R., Dorado J. Artificial Neural Networks in Real-Life Applications. IGI Global, 2005. 375 r.
7. Khaikin S. Neironnye seti: polnyi kurs : 2-e izd. ; per. s angl. M. : Vil'yams, 2008. 1104 s.
8. Graupe D. Principles of Artificial Neural Networks (Advanced Series in Circuits and Systems) : 2nd edition. World Scientific Pub Co Inc, 2007. 303 r.
9. Vasil'ev A. N., Tarkhov D. A. Printsipy i tekhnika neirosetevogo modelirovaniya. SPb. : Nestor-Istoriya, 2014. 217 s.
10. Jerald G. Graeme, Photodiode Amplifiers: Op Amp Solutions. McGraw-Hill, 1995. 252 r.
11. Philip C. D. Hobbs, Building electro-optical systems: making it all work. Hoboken, N. J. Wiley, 2008. 727 s.
12. Krekraft D., Dzherdzhi S. Analogovaya elektronika. Skhemy, sistemy, obrabotka signala. M. : Tekhnosfera, 2005. 357 s.
13. Gavrilov S. A. Skhemotekhnika. Master-klass. SPb. : Nauka i Tekhnika, 2016. 384 s.
14. Duarte F. J. Tunable Laser Optics : 2nd edition. N. Y. : CRC Press, 2015. 323 r.
15. Hecht E. Optics. Addison-Wesley, 2002. 704 r.
16. Dreyfus G. Neural Networks: Methodology and Applications : 2nd edition. Berlin, Heidelberg : Springer-Verlag, 2005. 516 r.
17. Karpenko A. P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi : ucheb. posobie. M. : Izd-vo MGTU im. N. E. Baumana, 2014. 448 s.
18. Greshilov A. A. Matematicheskie metody prinyatiya reshenii : ucheb. posobie ; 2-e izd., ispr. i dop. M. : Izd-vo MGTU im. N. E. Baumana, 2014. 647 s.
19. Strongin R. G., Gergel' V. P., Grishagin V. A., Barkalov K. A. Parallel'nye vychisleniya v zadachakh global'noi optimizatsii : monogr. M. : Izd-vo MGU, 2013. 280 s.
20. Lin K., Snaider L. Printsipy parallel'nogo programmirovaniya : ucheb. posobie. M. : Izd-vo MGU, 2013. 408 s.
Review
For citations:
Starkov S.O., Lavrenkov Yu.N. Neural signal processing systems with interdependent adaptation of components for noise immunity enhancement of radio communication system. Proceedings in Cybernetics. 2018;(1 (29)):131-142. (In Russ.)