Preview

Proceedings in Cybernetics

Advanced search

Digital Platform Buildup Principles for Science and Technology Center

Abstract

Digital platforms are recognized as a successful tool for the development of breakthrough strategies in both digital and non-digital industries. The authors of this study share the results of a digital platform project implemented at a scrence and technology center of the petroleum industry. The study analyzes known approaches to the establishment of digital platforms, identifies specific features related to scientific and research activities in the petroleum industry and shows how these features have been taken into account in the ERA:GRAD digital platform.

About the Authors

M. M. Khasanov
Gazprom Neft's Science and Technology Center
Russian Federation
Saint Petersburg


R. M. Galeev
Gazprom Neft's Science and Technology Center
Russian Federation
Saint Petersburg


A. M. Margarit
Gazprom Neft's Science and Technology Center
Russian Federation
Saint Petersburg


F. V. Krasnov
Gazprom Neft's Science and Technology Center
Russian Federation
Saint Petersburg


References

1. Велихов Е. П., Бетелин В. Б., Кушниренко А. Г. Промышленность, инновации, образование и наука в России. М. : Наука, 2009. 141 с.

2. Куприяновский В. П., Соколов И. А., Талашкин Г. Н., Дунаев О. Н., Зажигалкин А. В., Распопов В. В., Намиот Д. Е., Покусаев О. Н. Цифровая совместная экономика: технологии, платформы и библиотеки в промышленности, строительстве, транспорте и логистике // International Journal of Open Information Technologies. 2017. Т. 5, № 6. С. 65–75.

3. Chaum D. Security Without Identification: Transaction Systems to Make Big Brother Obsolete // Communications of the ACM. 1985. Vol. 28, No. 10. P. 1030–1044.

4. Никлаус В. Алгоритмы и структуры данных. Саратов : Профобразование, 2017. 274 с.

5. Wolpert D. H., Macready W. G. No Free Lunch Theorems for Optimization // IEEE Transactions on Evolutionary Computation. 1997. Vol. 1, No. 1. P. 67–82.

6. Flinn K. Leadership Development: A Complexity Approach. London : Routledge, 2018. 40 p.

7. Kluyver T., Ragan-Kelley B., Pérez F., Granger B. E., Bussonnier M., Frederic J., Ivanov P. Jupyter Notebooks – a Publishing Format for Reproducible Computational Workflows // Conference ELPUB. 2016. P. 87–90.

8. Портер М. Международная конкуренция: конкурентные преимущества стран. М. : Альпина Паблишер, 1993. 896 с.

9. Гимранов Р. Д. Стратификация информационных систем // Вестник кибернетики. 2016. №. 1. С. 57–62.

10. Abadi M., Barham P., Chen J., Chen Z., Davis A., et al. TensorFlow: a System for Large-Scale Machine Learning // OSDI. 2016. Vol. 16. P. 265–283.

11. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B. et al. Scikit-learn: Machine Learning in Python // Journal of Machine Learning Research. 2011. Vol. 12. P. 2825–2830.

12. Gulli A., Pal S. Deep Learning with Keras. : Packt Publishing Ltd, 2017. 318 p.

13. Paszke A., Gross S., Chintala S., Chanan G., Yang E. et al. Automatic Differentiation in PyTorch // 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. 4 p.


Review

For citations:


Khasanov M.M., Galeev R.M., Margarit A.M., Krasnov F.V. Digital Platform Buildup Principles for Science and Technology Center. Proceedings in Cybernetics. 2019;(4 (36)):66-73. (In Russ.)

Views: 230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)