Photovoltaic Array Maximum Power Point Tracking System Based on Modified Fuzzy Neural Network
https://doi.org/10.34822/1999-7604-2019-3-14-25
Abstract
The article considers the task of maximum power point tracking of a photovoltaic array. A photovoltaic array maximum power point tracking system based on a modified fuzzy neural network is developed. Compared to existing fuzzy neural networks a modified fuzzy neural network includes recurrent neural networks, one of which approximates multidimensional membership functions based on experimental data. In order to create an optimal architecture of a modified fuzzy neural network, we developed a modified multi-dimensional particle swarm algorithm. The algorithm generates an initial particle position based on the Nguyen–Widrow method and combines the stages of global optimization based on a multi-dimensional particle swarm optimization with the stages of gradient descent based on the Levenberg–Marquardt algorithm. The validity and advantages of the proposed photovoltaic array maximum power point tracking system based on a modified fuzzy neural network under random perturbations by numerical simulations in Octave are demonstrated. The simulation results show that the proposed tracking system achieves competitive performance and robustness, as compared to a classical control model with a PID controller based on perturbation and observation, or incremental conductance algorithm.
About the Authors
E. A. EngelRussian Federation
Abakan
N. E. Engel
Russian Federation
Abakan
References
1. Проект энергостратегии Российской Федерации на период до 2035 года : офиц. сайт Министерства энергетики Российской Федерации. 2019. URL: https://minenergo.gov.ru (дата обращения: 10.10.2019).
2. Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации : федер. закон от 23.11.2009 № 261-ФЗ : принят Государственной Думой 11 ноября 2009 года.
3. Макаров И. М., Лохин В. М., Манько С. В, Романов М. П., Ситников М. С. Устойчивость интеллектуальных систем автоматического управления // Информационные технологии. 2013. № S2. C. 1–32.
4. Karami N., Moubayed N., Outbib R. General Review and Classification of Different MPPT Techniques // Renewable and Sustainable Energy Reviews. 2017. Vol. 68. P. 1–18.
5. Jang J.-S. R. ANFIS: Adaptive-network-based Fuzzy Inference System // IEEE Transactions on Systems, Man and Cybernetics. 1993. Vol. 23, No. 3. P. 665–685.
6. Prokhorov D. V., Feldkamp L. A., Tyukin I. Y. Adaptive Behavior with Fixed Weights in RNNs: An Overview // Proceedings of the 2002 International Joint Conference on Neural Networks. 2002. Vol. 3. P. 2018–2022.
7. Kiranyaz S., Ince T., Yildirim A., Gabbouj M. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization // Neural Networks. 2009. Vol. 22, Is. 10. P. 1448–1462.
8. Levenberg K. A Method for the Solution of Certain Non-Linear Problems in Least Squares // Quarterly of Applied Mathematics. 1944. Vol. 2, No. 2. P. 164–168.
9. Nguyen D., Widrow B. Improving the Learning Speed of 2-layer Neural Networks by Choosing Initial Values of the Adaptive Weights // Proceedings of the International Joint Conference on Neural Networks. 1990. Vol. 3. P. 21–26.
10. Энгель Е. А. Метод построения эффективной системы обработки информации на основе нечетко-возможностного алгоритма // XV Всерос. науч.-технич. конференция «Нейроинформатика – 2013» : сб. науч. тр. В 3-х ч. 2013. М. : МИФИ, 2013. Ч. 3. С. 139–149.
Review
For citations:
Engel E.A., Engel N.E. Photovoltaic Array Maximum Power Point Tracking System Based on Modified Fuzzy Neural Network. Proceedings in Cybernetics. 2019;(3 (35)):14-25. (In Russ.) https://doi.org/10.34822/1999-7604-2019-3-14-25