Computer Images Processing in State Identification of Biological Cultures
https://doi.org/10.34822/1999-7604-2019-3-26-34
Abstract
The article discusses the problem of plants identification based on visual signs with the use of a computer vision system. The problem is solved in the space of colour components of the RGB model. The procedures of image preprocessing and morphological operators for binary images are used to improve the quality of identification. The results of the identification of biological objects could be used in automatic greenhouse systems.
About the Authors
L. Yu. ZapevalovaRussian Federation
A. V. Zapevalov
Russian Federation
D. V. Tarakanov
Russian Federation
References
1. Руткин Н. М., Лагуткина Л. Ю., Лагуткин О. Ю. Урбанизированное агропроизводство (сити-фермерство) как перспективное направление развития мирового агропроизводства и способ повышения продовольственной безопасности // Вестн. АГТУ. Серия: Рыбное хозяйство. 2017. № 4. URL: https://cyberleninka.ru (дата обращения: 10.12.2018).
2. Albadarneh A. Automated Flower Species Detection and Recognition from Digital Images // IJCSNS International Journal of Computer Science and Network Security. 2017. Vol. 17, No. 4. P. 144–151.
3. Amanatidis D. Image Contour Segmentation in Hardware // Radio Electronics, Computer Science, Control. 2015. No. 4. P. 66–71.
4. Ashwini R. Classification of Flower Images using Clustering Algorithms // IJCTA International Journal of Computer Technology and Applications. 2015. No. 8 (3). P. 1025–1032.
5. Elangovan K. Plant Disease Classification Using Image Segmentation and SVM Techniques // International Journal of Computational Intelligence Research. 2017. Vol. 13, No. 7. P. 1821–1828.
6. Hagara M., Kubinec P. About Edge Detection in Digital Images // Radioengineering. 2018. Vol. 27, No. 4. P. 919–929.
7. Jeon H. Y., Tian L. F., Zhul H. Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination // Sensors (Basel). 2011. No. 11 (6). P. 6270–6283.
8. Mainkar P. M., Ghorpade S., Adawadkar M. Plant Leaf Disease Detection and Classification Using Image Processing Techniques // International Journal of Innovative and Emerging Research in Engineering. 2015. Vol. 2, No. 4. P. 139–144.
9. Masood R., Khan S. A., Khan M. N. A. Plants Disease Segmentation using Image Processing // I. J. Modern Education and Computer Science. 2016. No. 1. P. 24–32.
10. Myasnikov E. V. Hyperspectral Image Segmentation Using Dimensionality Reduction And Classical Segmentation Approaches // Computer Optics. 2017. No. 41 (4). P. 564–572.
11. Oo Y. M., Htun N. C. Plant Leaf Disease Detection and Classification using Image Processing // International Journal of Research and Engineering. 2018. Vol. 5, No. 9. P. 516–523.
12. Oppenheim D., Edan Y., Shani G. Detecting Tomato Flowers in Greenhouses Using Computer Vision // International Journal of Computer and Information Engineering. 2017. Vol. 11, No. 1. P. 104–109.
13. Singh V., Misra A. K. Detection of Plant Leaf Diseases Using Image Segmentation and Soft Computing Techniques // Information Processing in Agriculture. 2016. No. 4 (1). P. 41–49.
14. Swathi R., Mahalakshmi T., Srinivas A. Vision Based Plant Leaf Disease Detection on The Color Segmentation through Fire Bird V Robot // GRD Journals – Global Research and Development Journal for Engineering. 2016. Vol. 1, No. 4. P. 75–79.
15. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М. : Техносфера, 2005. 1072 с.
16. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде Matlab. М. : Техносфера, 2006. 618 с.
Review
For citations:
Zapevalova L.Yu., Zapevalov A.V., Tarakanov D.V. Computer Images Processing in State Identification of Biological Cultures. Proceedings in Cybernetics. 2019;(3 (35)):26-34. (In Russ.) https://doi.org/10.34822/1999-7604-2019-3-26-34