Preview

Proceedings in Cybernetics

Advanced search

Command Pattern of Automated Control System for Greenhouse Complex

Abstract

The article describes the project contents on the working model creation of an automated control system for a greenhouse complex, which includes a controller, a cloud server, and a remote client. The system manages data collecting on the state of crops, lighting, power, and microclimate. Additional control over the process of growing plants is carried out using surveillance cameras installed in the greenhouse, the image from which is processed in real time and stored on the cloud server, and then transferred to the remote client.

The proposed approach for modelling and evaluating project activities is based on a comprehensive assessment of the project’s life cycle quality indicators. The logical dynamic model of the life cycle of the project design stage of the project creation is presented. As a mathematical formalism, the authors propose to use extended Petri nets – E-networks, which allow describing discrete parallel interacting processes when creating the system. The presented hierarchical E-network scheme allows modelling stages of work, as well as the resources used in the performance of these works. As a result of analytical and simulation work, both calculated integral evaluations of the project's effectiveness and effectiveness of each resource are presented. The result of the model as a timing diagram of the organization with the necessary level of detail is also given. The authors have proposed the following numerical indicators of resources costs for the project: an indicator of time and an indicator of the material costs spent on the i-th task.

About the Authors

M. Ya. Braginsky
Surgut State University
Russian Federation


D. V. Tarakanov
Surgut State University
Russian Federation


References

1. Work in the automation age: sustainable careers today and into the future // Association for Advancing Automation. Ann Arbor, April 2017. URL: https://www.a3automate.org/docs/Work-in-the-Automation-Age-White-Paper.pdf (дата обращения: 11.02.2019).

2. Laker D. The Differences Between Hard and Soft Skills and Their Relative Impact on Training Transfer // Human Resource Development Quarterly. 2011. Vol. 22, Is. 1. P. 111–122. DOI doi.org/10.1002/hrdq.20063.

3. Toner P. Workforce Skills and Innovation: An Overview of Major Themes in the Literature // OECD. 2011. 78 p. URL: https://www.oecd.org/sti/inno/46970941.pdf (дата обращения: 21.03.2019).

4. Skills for a Digital World. Policy Brief on The Future of Work // OECD. 2016. URL: http://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf (дата обращения: 04.03.2019).

5. Широкова Г. В., Клемина Т. Н., Козырева Т. П. Концепция жизненного цикла в современных организационных и управленческих исследованиях // Вестн. Санкт-Петербург. ун-та. Сер. 8. Менеджмент. 2007. Вып. 2. С. 3–31.

6. Гайкович А. И. Основы теории проектирования сложных технических систем. СПб. : МОРИНТЕХ, 2001. 432 с.

7. Товб А. С., Ципес Г. Л. Управление проектами: стандарты, метод, опыт. М. : Олимп-Бизнес, 2003. 240 с.

8. Гудвин Г. К., Гребе С. Ф., Сальгадо М. Э. Проектирование систем управления. М. : БИНОМ. Лаборатория знаний, 2004. 911 с.

9. Кэмп П., Тиммерман Г. Компьютерное управление микроклиматом в теплицах. Центр инноваций и практического обучения в Эдде, 1997. 178 с.

10. Соммер У. Программирование микроконтроллерных плат Arduino/Freeduino / пер. с нем. ; 2-е изд., перераб. и доп. СПб. : БХВ-Петербург, 2016. 256 с.

11. Basu S., Bultan T. On Deciding Synchronizability for Asynchronously Communicating Systems // Theor Comput Sci. 2016. No. 656. P. 60–75.

12. Hennicker R., Bidoit M., Dang T.-S. On Synchronous and Asynchronous Compatibility of Communicating Components // In Coordination Models and Languages : 18th IFIP WG 6.1 International Conference, COORDINATION 2016, Held as Part of the 11th International Federated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete. Greece, June 6–9, 2016. P. 138–156.

13. Lomazova I. A. Resource Equivalences in Petri Nets // Proc of PETRI NETS. Lecture Notes in Computer Science. 2017. P. 19–34.

14. Andrews A., Abdelgawad M., Gario A. World Model for Testing Urban Search and Rescue (USAR) Robots using Petri Nets // Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development. Rome, 2016. P. 663–670. DOI 10.5220/0005782106630670.

15. Braginsky M. Ya., Tarakanov D. V., Tsapko S. G. E-Network Modelling of Process Industrial Control Systems in Building Computer Simulators // Control and Communications (SIB-CON) : Proceedings of the XII International Siberian Conference. Moscow, May 12–14, 2016. M., 2016. P. 185–191.

16. Braginsky M. Ya., Tarakanov D. V., Tsapko S. G. Hierarchical Analytical and Simulation Modelling of Human-Machine Systems with Interference // Journal of Physics : Conference Series. 2017. Vol. 803. Information Technologies in Business and Industry (ITBI2016) : International Conference, 21–26 September 2016. Tomsk, Russian Federation. P. 120–126.

17. Шеремет А. Д. Анализ и диагностика финансово-хозяйственной деятельности предприятия. М. : ИНФРА-М, 2014. 367 с.

18. Русак Н. А., Стражев В. И., Мигун О. Ф. и др. Анализ хозяйственной деятельности в промышленности ; 6-е изд. М. : Высш. шк., 2015. 480 с.

19. Козлов А. А. Управление трудовыми ресурсами промышленных предприятий при переходе к рынку. Минск, 2010. 512 с.

20. Брагинский М. Я., Тараканов Д. В. Моделирование взаимодействия коллектива операторов в процессе управления технической системой // Вестник кибернетики. 2018. № 4 (32). С. 100–106.


Review

For citations:


Braginsky M.Ya., Tarakanov D.V. Command Pattern of Automated Control System for Greenhouse Complex. Proceedings in Cybernetics. 2019;(2 (34)):33-40. (In Russ.)

Views: 2348


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)