Preview

Proceedings in Cybernetics

Advanced search

SPEED COMPARISON OF GAMMA DISTRIBUTION GENERATION ALGORITHMS FOR SIMULATION MODEL OF COLUMN JET-EMULSION REACTOR

https://doi.org/10.34822/1999-7604-2020-4-42-49

Abstract

The article studies the performance of algorithms for generating random numbers from the gamma distribution. In the simulation model of the column jet-emulsion reactor, the gamma distribution is used to create particles for such parameters as the size and composition of substances in the particle. ActionScript 3.0 is chosen as the programming language. Seven algorithms for generating the gamma distribution are implemented: Marsaglia and Tsang, Cheng and Fist (two versions), Ahrens and Dieter, Tanizaki, Schmeiser (two versions) with a parameter value α > 1. To implement the Marsaglia and Tsang algorithm, algorithms for generating a normal law of distribution are considered: Box-Muller, Marsaglia-Bray, Devroy, central limit theorem, Neumann, the ziggurat method. The comparison of the generation of the gamma distribution in two versions is made: without preliminary initialization of the initial values and with it. The fastest for 1 < α < 2 was the Cheng and Fist algorithm. For α > 2 Marsaglia and Tsang's algorithm is stable with increasing gamma distribution parameter α.

About the Author

P. A. Sechenov
Siberian State Industrial University, Novokuznetsk, Russia
Russian Federation
E-mail: pavesa89@mail.ru


References

1. Цымбал В. П., Сеченов П. А., Рыбенко И. А. Имитационное моделирование на основе «первых принципов» и статистическая механика Гиббса // Вестн. Сибир. гос. индустриал. Ун-та. 2020. № 2 (32). С. 54–67.

2. Metropolis N., Ulam S. The Monte Carlo Method // J. Amer. statistical assoc. 1949 Vol. 44, № 247. P. 335–341.

3. Dunn W. L., Shultis J. K. Exploring Monte Carlo Methods. Elsevier, 2011. 398 p.

4. Kroese D. P., Taimre T., Botev Z. I. Handbook of Monte Carlo Methods. Wiley, 2011. 743 p.

5. Сеченов П. А., Цымбал В. П., Оленников А. А. Имитационная модель разделения составляющих пыли марганцевого производства // Кибернетика и программирование. 2016. № 2. С. 34–41.

6. Ермакова Л. А., Красноперов С. Ю., Калашников С. Н. Математическое моделирование нестационарного тепломассообмена в дисперсных системах // Металлургия: технологии, инновации, качество / под общей ред. Е. В. Протопопова. Новокузнецк, 2015. С. 265–268.

7. Gentle J. E. Random Number Generation and Monte Carlo Methods. New York: Springer. 2nd ed. 2005. 381 p.

8. Marsaglia G., Tsang W. A Simple Method for Generating Gamma Variables // ACM Transactions on Mathematical Software. 2000. № 26 (3). P. 363–372.

9. Tanizaki Н. A Simple Gamma Random Number Generator for Arbitrary Shape Parameters // Economics Bulletin, AccessEcon, 2008. Vol. 3(7). P. 1–10.

10. Schmeiser B. W. Squeeze methods for generate gamma variates. Dalas: Southern Methodist univ. 1978. 21 p.

11. Doornik J. A. An inproved Ziggurat method to generate normal random samples. University of Oxford. 2005. URL: https://www.doornik.com/research/ziggurat.pdf (дата обращения: 08.12.2020).


Review

For citations:


Sechenov P.A. SPEED COMPARISON OF GAMMA DISTRIBUTION GENERATION ALGORITHMS FOR SIMULATION MODEL OF COLUMN JET-EMULSION REACTOR. Proceedings in Cybernetics. 2020;(4 (40)):42-49. (In Russ.) https://doi.org/10.34822/1999-7604-2020-4-42-49

Views: 238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)