Preview

Proceedings in Cybernetics

Advanced search

ON PROBLEM OF SEARCH FOR HADAMARD MATRICES OF ORDER 668

https://doi.org/10.34822/1999-7604-2021-3-6-11

Abstract

The article describes the problem of calculation of Hadamard matrices of high orders. Definitions of twin matrices, Propus, Propus-M, Propus-E, is given. A method for their calculation via Mersenne and Euler matrices and modified Williamson array, based on two basic matrices, is described. A path of approximation of a Hadamard matrix of order 668 through Propus-M, based on a known Mersenne matrix of order 167, is shown, and definitions of matrices levels and their portraits are given. Equations of connection of Propus-M and Propus-E matrices levels are presented; their properties, numerical examples and portraits of Propus-M and Propus-E matrices calculated via modified Williamson array are analyzed.

About the Authors

A. M. Sergeev
Saint-Petersburg State University of Aerospace Instrumentation, Saint Petersburg
Russian Federation

E-mail: aleks.asklab@gmail.com



Yu. N. Balonin
Saint-Petersburg State University of Aerospace Instrumentation, Saint Petersburg
Russian Federation


References

1. Colbourn C., Dinitz J. Handbook of Combinatorial Designs, 2nd edition. Chapman and Hall/CRC, 2006. 1016 p.

2. Di Matteo O., Doković D. Z., Kotsireas I. S. Symmetric Hadamard Matrices of Order 116 and 172 Exist // Special Matrices. 2015. Vol. 3, № 1. P. 227–234.

3. Сергеев А. М., Востриков А. А. Специальные матрицы: вычисление и применение. СПб. : Политехника, 2018. 112 с.

4. Horadam K. J. Hadamard Matrices and their Applications: Progress 2007–2010 // Cryp-tography and Communications. 2010. Vol. 2. P. 129–154.

5. Craigen R., Kharaghani H. Hadamard Matrices and Hadamard Designs // In Handbook of Combinatorial Designs. 2006. P. 273–280. 6. Doković D. Z. Williamson Matrices of Order 4n for n=33;35;39 // Discrete Mathematics. 1993. Vol. 115. P. 267–271. 7. Baumert L., Golomb S. W., Hall M. Jr. Discovery of an Hadamard Matrix of Order 92 // Bull Amer Math Soc. 1962. Vol. 68. P. 237–238.

6. Балонин Н. А., Сергеев М. Б. Нормы обобщенных матриц Адамара // Вестник СПбГУ. Сер. 10. 2014. Вып. 2. C. 5–11.

7. Sergeev A., Sergeev M., Vostrikov A., Kurtyanik D. Portraits of Orthogonal Matrices as a Base for Discrete Textile Ornament Patterns // Smart Innovation, Systems and Technologies. 2019. Vol. 143. P. 135–143. DOI 10.1007/978-981-13-8303-8_12.

8. Балонин Ю. Н., Сергеев М. Б. М-матрица 22-го порядка // Информационно-управляющие системы. 2011. № 5. С. 87–90.

9. Балонин Н. А., Сергеев М. Б. Матрицы Пропус 92 и 116 // Информационно-управляющие системы. 2016. № 2. С. 101–103. DOI 10.15217/issn1684-8853.2016.2.101.

10. Balonin N. A., Doković D. Z., Mironovskiy L. A., Seberry J., Sergeev M. B. Hadamard-Type Matrices. URL: http://mathscinet.ru/catalogue/index.php (дата обращения: 30.08.2021).


Review

For citations:


Sergeev A.M., Balonin Yu.N. ON PROBLEM OF SEARCH FOR HADAMARD MATRICES OF ORDER 668. Proceedings in Cybernetics. 2021;(3 (43)):6-11. (In Russ.) https://doi.org/10.34822/1999-7604-2021-3-6-11

Views: 169


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)