Preview

Proceedings in Cybernetics

Advanced search

STUDY OF FLAME PROPAGATION IN AN EXPANDING SPHERE

https://doi.org/10.34822/1999-7604-2022-3-75-83

Abstract

The article studies the flame propagation in a soap bubble filled with a spherical volume of a homogeneous pre-mixed combustible gas ignited by an electrical discharge. Visualization of the flame front propagation is carried out using a high-speed digital video camera. The video recordings of an experiment series show the relationship between the flame front velocity and the time and radial values of a soap bubble in various conditions.
The experiment results can be used for the invention of a modern combustion chamber and more sophisticated burner arrangements.

About the Authors

M. M. Alekseev
Surgut State University, Surgut
Russian Federation

Candidate of Sciences (Physics and Mathematics), Associate Professor

E-mail: amm.iff@gmail.com



O. Yu. Semenov
Surgut State University, Surgut
Russian Federation

Candidate of Sciences (Physics and Mathematics), Associate Professor

E-mail: ous.tutor.phinma@mail.ru



References

1. Faghih M., Chen Z. The Constant-Volume Propagating Spherical Flame Method for Laminar Flame Speed Measurement Science // Science Bulletin.

2. Vol. 61, Is. 16. P. 1296–1310. DOI 10.1007/s11434-016-1143-6.

3. Vledouts A., Quinard J., Vandenberghe N., Villermaux E. Explosive Fragmentation of Liquid Shells // J Fluid Mech. 2016. Vol. 788. P. 246–273. DOI

4. 1017/jfm.2015.716.

5. Li F.-S., Li G.-X., Jiang Y.-H., Li H.-M., Sun Z.-Y. Study on the Effect of Flame Instability on the Flame Structural Characteristics of Hydrogen/Air

6. Mixtures Based on the Fast Fourier Transform // Energies. 2017. Vol. 10, No. 5. P. 678. DOI 10.3390/en10050678.

7. Askari O., Elia M., Ferrari M., Metghalchi H. Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures // Appl Energy 2017. Vol. 189, Is. C. P. 568–577.

8. Choi O., Lee M. C. Investigation into the Combustion Instability of Synthetic Natural Gases Using High Speed Flame Images and Their Proper Orthog-

9. onal Decomposition // Int J Hydrog Energy. 2016. Vol. 41, Is. 45. P. 20731–20743.

10. Володин В. В., Голуб В. В., Ельянов А. Е., Коробов А. Е., Микушкин А. Ю., Петухов В. А. Влияние объема водородно-воздушной газовой смеси, типа и энергии инициирования на распространение сферического фронта пламени // Вестн. МГТУ им. Н. Э. Баумана. Сер. Естественные

11. науки. 2019. No 2. С. 64–80. DOI 10.18698/1812-3368-2019-2-64-80.

12. Vledouts A., Quinard J., Vandenberghe N., Villermaux E. Explosive Fragmentation of Liquid Shells // J Fluid Mech Cambridge University Press. 2016.

13. Vol. 788. P. 246–273. DOI 10.1017/jfm.2015.716.

14. Семенов О. Ю. Исследование релаксационного распространения пламени в каналах : автореф. дис. ... канд. физ.-мат. наук. Томск, 2014. 23 с. URL: https://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000476181 (дата обращения: 01.04.2022).

15. Ciccarelli G., Chaumeix N., Mendiburu A. Z., N’Guessan K., Comandini A. Fast-Flame Limit for Hydrogen/Methane-Air Mixtures // Proceedings

16. of the Combustion Institute. 2019. Vol. 37, Is. 3. P. 3661–3668. DOI 10.1016/j.proci.2018.06.045.

17. Alekseev M. M., Alekseev M. V., Samsonov V. P., Semenov O. Yu. Simulation of Hydrodynamic Phenomena Attendant on the Flame Front Propagation in a Tube Behind a Piston // Tech Phys. 2014. Vol. 59, No. 1. P. 52–59.

18. Nandan V. D., Deore N. Developments of Flame Propagation in Micro and Mesoscale Channels // IOSR Journal of Engineering. 2014. Vol. 04, Is. 06.

19. P. 26–29.

20. Алексеев М. М., Семенов О. Ю. Физическое моделирование тюльпанообразного пламени при горении газов в цилиндрической вертикальной

21. трубе // Вестн. кибернетики. 2021. No 1 (41). С. 63–70.

22. Jang H. J., Lee S. M., Kim N. I. Effects of Ignition Disturbance on Flame Propagation of Methane and Propane in a Narrow-Gap-Disk-Burner // Combustion and Flame. 2020. Vol. 215. P. 124–133. DOI 10.1016/j.combustflame.2020.01.019.

23. Алексеев М. М., Борисов В. Е., Семенов О. Ю., Якуш С. Е. Моделирование горения в узком плоском канале // Препринты ИПМ им. М. В. Келдыша. 2016. Т. 134. 32 с. DOI 10.20948/prepr-2016-134.

24. Badawy T., Chao X. B., Xu H. Impact of Spark Plug Gap on Flame Kernel Propagation and Engine Performance // Applied Energy. 2017. Vol. 191. P. 311–327. DOI 10.1016/j.apenergy.2017.01.059.

25. Jang H. J., Jang G. M., Kim N. I. Unsteady Propagation of Premixed Methane/Propane Flames in a Mesoscale Disk Burner of Variable-Gaps // Proceedings of the Combustion Institute. 2018. Vol. 37, Is. 2. P. 1861–1868. DOI 10.1016/j.proci.2018.06.112.

26. Radisson B., Piketty-Moine J., Almarcha C. Coupling of Vibro-Acoustic Waves with Premixed Flame // Phys Rev Fluids. 2019. Vol. 4, Is. 12. P. 121201.

27. Zhao D., Li J. Feedback Control of Combustion Instabilities Using a Helmholtz Resonator with an Oscillating Volume // Combustion Science and

28. Technology. 2012. Vol. 184, Is. 5. P. 694–716.

29. Kiverin A., Yakovenko I. Mechanism of Transition to Detonation in Unconfined Volumes // Acta Astronautica. 2020. Vol. 176. P. 647–652. DOI 10.1016/j.actaastro.2020.02.013.


Review

For citations:


Alekseev M.M., Semenov O.Yu. STUDY OF FLAME PROPAGATION IN AN EXPANDING SPHERE. Proceedings in Cybernetics. 2022;(3 (47)):75-83. (In Russ.) https://doi.org/10.34822/1999-7604-2022-3-75-83

Views: 213


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)