Preview

Proceedings in Cybernetics

Advanced search

COMPARING TYPES OF KERNELS IN CONVOLUTIONAL LAYERS OF NEURAL NETWORKS

https://doi.org/10.34822/1999-7604-2022-3-84-98

Abstract

The article studies the process of using fixed specified convolutional kernels. The calculations are conducted considering the change in filter size and stride. In the course of the study, four different sets of images and structures of neural networks are selected. The article discusses four types of specified kernels: vertical, horizontal, diagonal, and ring. The dependency of the accuracy of image recognition in monochrome and color is analyzed. A positive shift is observed when training fixed kernels.

About the Authors

V. M. Giniyatullin
Ufa State Oil Technical University, Ufa
Russian Federation

Candidate of Sciences (Engi-neering), Associate Professor
E-mail: fentazer@mail.ru



A. V. Khlybov
Ufa State Oil Technical University, Ufa
Russian Federation

Postgraduate
E-mail: brinkinvision@gmail.com



M. A. Fedorov
Ufa State Oil Technical University, Ufa
Russian Federation

Student
E-mail: MasterOfHoMM@gmail.com



T. A. Asadullin
Ufa State Oil Technical University, Ufa
Russian Federation

Student
E-mail: tealredplanet@gmail.com



A. S. Krutin
Ufa State Oil Technical University, Ufa
Russian Federation

Student
E-mail: krut_inuly@mail.ru



I. A. Osipov
Ufa State Oil Technical University, Ufa
Russian Federation

Student
E-mail: warluswarlusgg@gmail.com



D. M. Zaripov
Ufa State Oil Technical University, Ufa
Russian Federation

Candidate of Sciences (Physics and Mathematics), Associate Professor

E-mail: damir.zaripov@gmail.com



References

1. Mahajan P. Fully Connected vs Convolutional Neural Networks. URL: https://medium.com/swlh/fully-connected-vs-convolutional-neural-networks-813ca7 bc6ee5 (дата обращения: 25.07.2022).

2. Lin Z., Memisevic R., Konda K. How Far Can We Go without Convolution: Improving Fully-Connected Networks // arXiv. 2015. URL: https://arxiv.org/abs/ 1511.02580 (дата обращения: 25.07.2022).

3. Vajpayee S. License Plate Recognition Using CNN. URL: https://www.kaggle.com/code/sarthakvajpayee/ license-plate-recognition-using-cnn/notebook (дата обращения: 25.07.2022).

4. Гиниятуллин В. М., Ермолаев Е. В., Хлыбов А. В. Формализация процедуры подбора сверточных ядер // Вест. кибернетики. 2022. № 2. С. 66–74.

5. Хлыбов А. В., Ермолаев Е. В., Зеленов А. С., Коняева Е. Э., Фаррахова К. А., Хужиахметов В. Э., Яковлев А. С. Преобразование весов матриц сверточных нейронных сетей // Теория и практика процессов хим. технологии (Марушкинские чтения) : материалы VI Междунар. науч. конф. Уфа, 2021. С. 269–270.

6. CNN Fruit Classification. Data. URL: https://www.kag gle.com/etatbak/cnn-fruit-classification/ data (дата обращения: 25.07.2022).

7. Pneumonia Detection Using CNN (92.6 % Accura-cy). Data. URL: https://www.kaggle.com/madz2000/ pneumonia-detection-using-cnn-92-6-accuracy/data (дата обращения: 25.07.2022).

8. Detecting Malaria | Keras | CNN. Data. URL: https://www.kaggle.com/miracle9to9/detecting-malaria-keras-cnn/data (дата обращения: 25.07.2022).

9. Fashion MNIST – Keras CNN. Data. URL: https://www.kaggle.com/vishnu0399/fashion-mnist-keras-cnn/data (дата обращения: 25.07.2022).

10. CNN Fruit Classification. Notebook. URL: https://www.kaggle.com/etatbak/cnn-fruit-classification/ notebook (дата обращения: 25.07.2022).

11. Pneumonia Detection Using CNN (92.6 % Accuracy). Notebook. URL: https://www.kaggle.com/ madz2000/pneumonia-detection-using-cnn-92-6-accuracy/notebook (дата обращения: 25.07.2022).

12. Detecting Malaria | Keras | CNN. Notebook. URL: https://www.kaggle.com/miracle9to9/detecting-malaria-keras-cnn/notebook (дата обращения: 25.07.2022).

13. Fashion MNIST – Keras CNN. Notebook. URL: https://www.kaggle.com/vishnu0399/fashion-mnist-keras-cnn/notebook (дата обращения: 25.07.2022).

14. Understand How Color to Gray Scale Works Using OpenCV. URL: https://www.learnpythonwithrune.org/ understand-how-color-to-gray-scale-works-using-opencv/ (дата обращения: 25.07.2022).

15. Tf.keras.layers.Dropout. URL: https://www.tensor flow.org/api_docs/python/tf/keras/layers/Dropout (дата обращения: 25.07.2022).


Review

For citations:


Giniyatullin V.M., Khlybov A.V., Fedorov M.A., Asadullin T.A., Krutin A.S., Osipov I.A., Zaripov D.M. COMPARING TYPES OF KERNELS IN CONVOLUTIONAL LAYERS OF NEURAL NETWORKS. Proceedings in Cybernetics. 2022;(3 (47)):84-98. (In Russ.) https://doi.org/10.34822/1999-7604-2022-3-84-98

Views: 157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)