Preview

Proceedings in Cybernetics

Advanced search

TIME SERIES STRUCTURE ANALYSIS OF THE NUMBER OF LAW CASES

https://doi.org/10.34822/1999-7604-2022-4-37-48

Abstract

The study analyzes the time series of the number of new cases in the administrative courts of the Russian Federation using two methods of time series grouping according to the chaotic, stochastic, and regular structure. The first model is based on the entropy‒complexity plane, the second one is presented by the attribute‒object graph. As a result, four groups of time series were derived: regular, regular-chaotic, purely chaotic, and chaotic-stochastic. Most of the series turned out to be chaotic-stochastic, which is common for real systems. Each group of time series is assigned with a suitable prediction algorithm. For example, algo-rithms of nonlinear dynamics can be used for chaotic series, and models based on stochastic processes can be used for strongly stochastic series.

About the Authors

V. A. Gromov
National Research University Higher School of Economics, Moscow
Russian Federation

Doctor of Sciences (Physics and Mathematics), Professor

E-mail: stroller@rambler.ru



P. P. Lukyanchenko
National Research University Higher School of Economics, Moscow
Russian Federation

Senior Lecturer

E-mail: lukianchenko.pierre@gmail.com



Yu. N. Beschastnov
National Research University Higher School of Economics, Moscow
Russian Federation

Research Assistant

E-mail: y.beschastnov@mail.ru



K. K. Tomashchuk
National Research University Higher School of Economics, Moscow
Russian Federation

Research Assistant

E-mail: korneytomashchuk@yandex.ru



References

1. Gromov V. A. Chaotic Time Series Prediction: Run for the Horizon // Proceedings of the 5th International Conference, TMPA 2019, Tbilisi, Georgia, November 7–9, 2019. 2021. P. 29‒43.

2. Ferré S., Huchard M., Kayoue M., Kuznetsov S. O., Napoli A. Formal Concept Analysis: From Knowledge Discovery to Knowledge Processing // A Guided Tour of Artificial Intelligence Research / Eds. Mar-quis P., Papini O., Prade H. 2020. P. 411‒445.

3. Mehdizadeh S. A Robust Method to Estimate the Largest Lyapunov Exponent of Noisy Signals: A Revision to the Rosenstein’s Algorithm // J Biomech. 2019. Vol. 85. P. 84‒91.

4. Gottwald G. A., Melbourne I. A New Test for Chaos in Deterministic Systems // Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2004. Vol. 460, No. 2042. P. 603‒611.

5. Gottwald G. A., Melbourne I. On the Implementation of the 0–1 Test for Chaos // SIAM Journal on Applied Dynamical Systems. 2009. Vol. 8, Is. 1. P. 129‒145.

6. Gottwald G. A., Melbourne I. The 0-1 Test for Chaos: A Review // Chaos Detection and Predicta-bility / Eds. Skokos C., Gottwald G., Laskar J. 2016. P. 221‒247. 7. Tempelman J. R., Khasawneh F. A. A Look into Chaos Detection through Topological Data Analysis // Physica D: Nonlinear Phenomena. 2020. Vol. 406. P. 132446. 8. Rosso O. A., Carpi L. C., Saco P. M. et al. Causality and the Entropy–Complexity Plane: Robustness and Missing Ordinal Patterns // Physica A: Statistical Mechanics and its Applications. 2012. Vol. 391, Is. 1‒2. P. 42‒55.

7. Громов В. А., Мазайшвили К. В., Заикин П. В. и др. Различение хаотических и регулярных временных рядов для идентификации состояния артериовенозной фистулы // Вестник кибернетики. 2022. № 1 (45). C. 72–82.

8. Малинецкий Г. Г., Потапов А. Б., Подлазов А. В. Нелинейная динамика: подходы, результаты, надежды // Синергетика: от прошлого к будущему. 2016. Т. 9, № 28. С. 30–121.

9. Электронное правосудие. URL: https://kad.arbitr.ru/ (дата обращения: 01.11.2022).

10. Mushtaq R. Augmented Dickey Fuller Test // SSRN Electronic Journal. 2011. 19 p.

11. Liu Y., Ma S., Du X. An Improved K-Means Algo-rithm Based on a New Cluster Center Selection Method // IEEE Access. URL: https://www.research gate.net/publication/347610712_An_improved_k-means_algorithm_based_on_a_new_cluster_center_ selection_method (дата обращения: 01.11.2022).


Review

For citations:


Gromov V.A., Lukyanchenko P.P., Beschastnov Yu.N., Tomashchuk K.K. TIME SERIES STRUCTURE ANALYSIS OF THE NUMBER OF LAW CASES. Proceedings in Cybernetics. 2022;(4 (48)):37-48. (In Russ.) https://doi.org/10.34822/1999-7604-2022-4-37-48

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)