SEARCHING FOR AN EXTREME COMPONENT CONTENT IN A REACTING SYSTEM USING GRAPH OF CHEMICAL REACTIONS
https://doi.org/10.35266/1999-7604-2023-1-21-28
Abstract
The article presents a technique for calculating a maximum amount of a substance in a closed system using a step-by-step graph of chemical reactions. A list of probable one- and two-particle reversible reactions is generated based on the substances that may be a part of the reacting system. The list is narrowed down according to the research objectives and conditions of the reacting system. The obtained list corresponds to the incidence matrix, which is suitable for analyzing the graph via a computer. The search for the maximum amount of the component in question is conducted through the comparison of weights of the graph’s edges at each stage of its intermediate reactions. The graph’s weights are calculated based on the kinetic coefficients of reactions. They also determine the dominant reaction. The amount is calculated under the premise that the dominant reaction is equilibrium. The maximum amount of hydroperoxyl radical HO2 in a hydrogen H and oxygen O reacting system is calculated.
About the Authors
M. A. KozlovaRussian Federation
Postgraduate, Research Engineer
E-mail: kma95@isem.irk.ru
V. A. Shamansky
Candidate of Sciences (Chemistry), Senior Researcher
E-mail: vita@isem.irk.ru
References
1. Антипина Е. В. Применение теории графов при решении задач моделирования химических реакций // NovaInfo. 2022. № 130. С. 4–5.
2. Кинг Р. Химические приложения топологии и теории графов. М. : Мир, 1987. 560 с.
3. Feinberg M. Foundations of Chemical Reaction Network Theory. Cham, Switzerland : Springer, 2019. 473 p.
4. Спивак С. И., Исмагилова А. С., Гибаева Р. А. Теоретико-графовый метод анализа информативности кинетических экспериментов при определении параметров // Вестник Башкирского университета. 2014. Т. 19, № 4. С. 1126–1130.
5. Gao X., Yang S., Sun W. A Global Pathway Selection Algorithm for the Reduction of Detailed Chemical Kinetic Mechanisms. Combust Flame. 2016. Vol. 167. P. 238–247.
6. Wang Q.-D. Skeletal Mechanism Generation for High-Temperature Combustion of H2/CO/C1–C4 Hydrocarbons. Energy Fuels. 2013. Vol. 27, No. 7. P. 4021–4030.
7. Козлова М. А., Шаманский В. А. Построение графа химических реакций для анализа реагирующих систем // Информационные и математические технологии в науке и управлении. 2022. № 4. С. 108–118. DOI 10.38028/ESI.2022.28.4.008.
8. Chen Y., Chen J.-Y. Towards Improved Automatic Chemical Kinetic Model Reduction Regarding Igni-tion Delays and Flame Speeds. Combust Flame. 2018. Vol. 190. P. 293–301.
9. NIST Chemical Kinetics Database. URL: https://kinetics.nist.gov/kinetics/ (дата обращения: 11.12.2022).
10. Гурвич Л. В., Вейц И. В., Медвеaдев В. А. Термо-динамические свойства индивидуальных веществ. М. : Наука, 1978. Т. 1. 496 с.
11. Горбань А. Н. Обход равновесия: уравнения химической кинетики и их термодинамический анализ. Новосибирск : Наука, 1984. 227 с.
12. Chiavazzo E., Karlin I. V., Frouzakis C. E., Boulouchos K. Method of Invariant Grid for Model Reduc-tion of Hydrogen Combustion. 2007. DOI 10.48550/ arXiv.0712.2386.
13. Горбань А. Н., Каганович Б. М., Филиппов С. П. Термодинамические равновесия и экстремумы: Анализ областей достижимости и частичных равновесий в физико-химических и технических системах. Новосибирск : Наука, 2001. 296 с.
Review
For citations:
Kozlova M.A., Shamansky V.A. SEARCHING FOR AN EXTREME COMPONENT CONTENT IN A REACTING SYSTEM USING GRAPH OF CHEMICAL REACTIONS. Proceedings in Cybernetics. 2023;22(1):21-28. (In Russ.) https://doi.org/10.35266/1999-7604-2023-1-21-28