Preview

Proceedings in Cybernetics

Advanced search

INTELLIGENT MODEL FOR MAXIMIZING THE GENERATED POWER OF A RECONFIGURABLE SOLAR POWER PLANT

https://doi.org/10.35266/1999-7604-2023-1-52-58

Abstract

The global maximum power point tracking of a solar power plant in partial shading demands a global optimization. Standard algorithms for tracking of maximum power point do not provide for a maximum global power of a solar power plant during real time mode due to low convergence. A model of maximizing the generated power of a reconfigurable solar power plant was developed as a modified fuzzy deep neural network based on the modified quantum-behaved particle swarm optimizer. This neural network consists of the following: convolutional units, recurrent neural networks, and fuzzy units. By processing the sensor signals and images of the solar array, the set modified fuzzy deep neural network generates a reference voltage and an electrical interconnection matrix of the parallel-serial solar array, maximizing its power under non-uniform insolation. The neural network demonstrates such advantages as robustness, better efficiency, and tracking speed in comparison
with the model of a reconfigurable solar power plant based on the particle swarm optimization.

About the Authors

E. A. Engel
Katanov State University of Khakassia, Abakan
Russian Federation

Candidate of Sciences (Engineering), Associate Professor
E-mail: ekaterina.en@gmail.com



N. E. Engel
Katanov State University of Khakassia, Abakan
Russian Federation

Bachelor’s Degree Student

E-mail: nikita.en@gmail.com



References

1. Osmani K., Haddad A., Jaber H. et. al. Mitigating the Effects of Partial Shading on PV System’s Performance through PV Array Reconfiguration: A Review. Thermal Science and Engineering Progress. 2022. Vol. 31. P. 101280.

2. Проект энергостратегии Российской Федерации на период до 2035 года // М-во энергетики Рос. Федерации : офиц. сайт. URL: https://minenergo. gov.ru/view-pdf/1920/104837 (дата обращения: 15.11.2022).

3. Lakshika K. A. H., Boralessa M. A. K. S., Perera M. K. et. al. Reconfigurable Solar Photo- voltaic Systems: A review. Heliyon. 2020. Vol. 6, No. 11. P. E05530.

4. Baka M., Manganiello P., Soudris D., Catthoor F. A Cost-Benefit Analysis for Reconfigurable PV Modules under Shading. Solar Energy. 2019. Vol. 178. P. 69–78.

5. Ajmal A. M., Ramachandaramurthy V. K., Tomar A. et. al. Optimal Dynamic Reconfiguration of Large-Scale PV Plant under Partial Shading Conditions Based on Two Reconfigurable Stages. Int Trans Electr Energ Syst. 2021. Vol. 31, No. 10. P. e12746.

6. Ibrahim S. A., Nasr A., Enany M. A. Maximum Power Point Tracking Using ANFIS for a Reconfigu-rable PV-Based Battery Charger under Non-Uniform Operating Conditions. IEEE Access. 2021. Vol. 9. P. 114457‒114467.

7. Энгель Е. А., Энгель Н. Е. Система слежения за точкой максимальной мощности фотоэлектрического массива на основе модифицированной нечеткой нейросети // Вестник кибернетики. 2019. № 3. С. 14–25.

8. Энгель Е. А., Энгель Н. Е. Интеллектуальная система слежения за точкой максимальной мощности фотоэлектрического массива // Вестник Кибернетики. 2020. № 4. С. 21–27.


Review

For citations:


Engel E.A., Engel N.E. INTELLIGENT MODEL FOR MAXIMIZING THE GENERATED POWER OF A RECONFIGURABLE SOLAR POWER PLANT. Proceedings in Cybernetics. 2023;22(1):52-58. (In Russ.) https://doi.org/10.35266/1999-7604-2023-1-52-58

Views: 99


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)