Preview

Proceedings in Cybernetics

Advanced search

APPLYING A COMPUTER VISION SYSTEM FOR STUDYING FLAME FRONT PROPAGATION IN AN EXPERIMENT

https://doi.org/10.35266/1999-7604-2023-2-6-12

Abstract

The article describes a method for processing of video recordings of flame front propagation in narrow channels using a computer vision library based on the open source code OpenCV. Using the results of machine processing, new data on flame sustainability and topology in a two-dimensional Hele-Shaw channel were obtained. The dependence of apparent speed on the channel gap width demonstrates that the wider the gap, the faster flame propagation growth due to reduced influence of viscosity and heat loss.

About the Authors

M. M. Alekseev
Surgut State University, Surgut
Russian Federation

Candidate of Sciences (Physics and Mathematics), Docent
E-mail: amm.iff@gmail.com



O. Yu. Semenov
Surgut State University, Surgut
Russian Federation

Candidate of Sciences (Physics and Mathematics), Docent

E-mail: ous.tutor.phinma@mail.ru



References

1. Joulin G., Sivashinsky G. I. Influence of momentum and heat losses on the large-scale stability of quasi-2D premixed flames. Combust Sci Technol. 1994;98:11–23.

2. Yakush S., Semenov O., Alexeev M. Premixed pro-pane-air flame propagation in a narrow channel with obstacles. Energies. 2023;16(3):1516.

3. Wongwiwat J., Gross J., Ronney P. D. Flame propa-gation in narrow channels at varying Lewis number. In: Proceedings of the 25th ICDERS, Leeds, UK, August 2–7, 2015. p. 3–8.

4. Almarcha C., Radisson B., Al Sarraf E. et al. Interface dynamics, pole trajectories, and cell size statistics. Phys Rev E. 2018;98:030202.

5. Tayyab M., Radisson B., Almarcha C. et al. Experi-mental and numerical Lattice-Boltzmann investiga-tion of the Darrieus – Landau instability. Combust Flame. 2020;221:103–109.

6. Alexeev M. M., Semenov O. Y., Yakush S. E. Exper-imental study on cellular premixed propane flames in a narrow gap between parallel plates. Combust Sci Technol. 2018;191(7):1256–1275.

7. Jang H. J., Jang G. M., Kim N. I. Unsteady propa-gation of premixed methane/propane flames in a mesoscale disk burner of variable-gaps. Proc Com-bust Inst. 2019;37(2):1861–1868.

8. Veiga-López F., Martínez-Ruiz D., Fernández- Tarrazo E. et al. Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end. Combust Flame. 2019;201:1–11.

9. Bychkov V. V., Liberman M. A. Dynamics and stability of premixed flames. Phys Rep. 2000;325(4‒5):115–237.

10. Matalon M. Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu Rev Fluid Mech. 2007;39:163–191.

11. Zeldovich Y. B., Barenblatt G. I., Librovich V. B. et al. The mathematical theory of combustion and explo-sions. New York: Springer; 1985. 619 p.

12. Radisson B., Piketty-Moine J., Almarcha C. Coupling of vibro-acoustic waves with premixed flame. Phys Rev Fluids. 2019;4(12):121201.

13. Fernandez-Galisteo D., Kurdyumov V. N., Ronney P. D. Analysis of premixed flame propagation between two closely-spaced parallel plates. Combust Flame. 2018;190:133–145.

14. Alekseev M. M., Smirnova I. V., Semenov O. Y. et. al. Modeling edge flame propagation in a stratified fuel gas-air mixture. Technical Physics Letters. 2012;38(11):1010–1012.

15. Suarez O. D., Garcia G. B., Aranda J. L. E. et al. Learning image processing with OpenCV. Birming-ham, UK: Packt Publishing; 2015. p. 232.


Review

For citations:


Alekseev M.M., Semenov O.Yu. APPLYING A COMPUTER VISION SYSTEM FOR STUDYING FLAME FRONT PROPAGATION IN AN EXPERIMENT. Proceedings in Cybernetics. 2023;22(2):6-12. (In Russ.) https://doi.org/10.35266/1999-7604-2023-2-6-12

Views: 1238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)