Preview

Proceedings in Cybernetics

Advanced search

Development of a neural network decoding architecture based on gating and weight distribution systems

https://doi.org/10.35266/1999-7604-2024-3-6

Abstract

The research analyzes the working architecture for a neural network decoding algorithm based on belief propagation. It is found that the weight distribution and an effi cient computational graph determine the number of trainable parameters and computations in the neural network. The weight distribution involves calculating the weighted sum of the output signals of the neurons of a layer, multiplied by the corresponding weights, and adding the biases. The data region extraction method involves applying a nonlinear activation function to the output signals of neurons. After several iterations of local decoding, the algorithm calculates the loss value using the mean square error loss function. The simulation results indicated that using an approach similar to the neural network Belief Propagation (BP) algorithm improved the performance compared to the standard decoder built using the standard BP algorithm. A robust neural network-based decoding scheme for wireless communication systems is proposed. This recurrent neural network architecture, based on gating and weight distribution algorithms, is designed to perform belief propagation decoding without prior knowledge of the coding scheme.

About the Authors

A. A. Pirogov
Voronezh State Technical University, Voronezh
Russian Federation

Candidate of Sciences (Engineering), Docent



M. V. Khoroshailova
Voronezh State Technical University, Voronezh
Russian Federation

Candidate of Sciences (Engineering), Docent



E. V. Syomka
Military Educational and Scientifi c Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy the Ministry of Defence of the Russian Federation, Voronezh
Russian Federation

Candidate of Sciences (Physics and Mathematics), Docent



References

1. Зинченко М. Ю., Левадний А. М., Гребенко Ю. А. Реализация LDPC декодера на ПЛИС и оптимизация потребляемой мощности // T-Comm: Телекоммуникации и транспорт. 2020. Т. 14, № 3. С. 4–10.

2. Хорошайлова М. В. Архитектура канального кодирования на основе ПЛИС для 5G беспроводной сети с использованием высокоуровневого синтеза // Вестник Воронежского государственного технического университета. 2018. Т. 14, № 2. С. 99–105.

3. Хорошайлова М. В. Архитектура для стохастических LDPC-декодеров c использованием эффективной площади кристалла на основе ПЛИС // Вестник Воронежского государственного технического университета. 2018. Т. 14, № 1. С. 95–100.

4. Башкиров А. В., Хорошайлова М. В., Демихова А. С. Разработка архитектуры слепого распознавания линейного блочного кодирования с использованием каскадной сети // Вестник Воронежского государственного технического университета. 2023. Т. 19, № 6. С. 130–137.

5. Башкиров А. В., Муратов А. В., Хорошайлова М. В. и др. Низкоплотностные коды малой мощности декодирования // Радиотехника. 2016. № 5. С. 32–37.

6. Silver D., Huang A., Maddison C. J. et al. Mastering the game of Go with deep neural networks and tree search // Nature. 2016. Vol. 529, no. 7587. P. 484–489.

7. Овинников А. А. Способ идентификации циклов в графах Таннера LDPC кодов на основе пересечений коротких замкнутых структур в протографах // Цифровая обработка сигналов. 2016. № 4. С. 26–30.

8. Mandic D. P., Chambers J. A. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. London : Wiley, 2001. 308 p.


Review

For citations:


Pirogov A.A., Khoroshailova M.V., Syomka E.V. Development of a neural network decoding architecture based on gating and weight distribution systems. Proceedings in Cybernetics. 2024;23(3):46-55. (In Russ.) https://doi.org/10.35266/1999-7604-2024-3-6

Views: 68


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)