Preview

Proceedings in Cybernetics

Advanced search

E-network hierarchical modeling of voluntary and involuntary movements of a human-operator using parametric neural network identification

Abstract

The building of the low-level simulation model of voluntary and involuntary hand movements with the help of the adaptive identification method is considered in the article. It is proposed to use the dynamic neural network as a mathematical apparatus for identifying the parameters of the regulation level of local movements. The presented solution allows carrying out parametric identification of complex objects, in real time as well. We propose the construction of the dynamic model of local voluntary and involuntary hand movements in three-dimensional space. The artificial neural network testing to solve the identification problem was carried out in the Matlab/Simulink simulation environment. The presented work illustrates the possibility of using the E-network apparatus as a mathematical apparatus for modeling heterogeneous interacting processes. The use of neural network identification is necessary for modeling the logical-dynamic level of a human-operator and elements of automated control systems for technological processes. For the construction of a top-level model, it is proposed to use modified Petri nets - E-networks, which allows solving the problem of analytical and simulation modeling of complex parallel processes efficiently. The specific feature of the proposed model is the hierarchy, that allows modeling the levels of object details and processes in the human machine system.

About the Authors

M. Ya. Braginsky
Surgut State University
Russian Federation


D. V. Tarakanov
Surgut State University
Russian Federation


References

1. Baron S., Kruser D. Quantitative modeling of human performance in complex, dynamic systems. Washington, DC : National Academies Press, 1990. 96 p.

2. Дружинин Г. В. Учет свойств человека в моделях технологий М. : Наука ; Интерпериодика, 2000. 237 с.

3. Sheridan T. Humans and Automation: System Design and Research Issues. John Wiley and Sons, 2002. 261 p.

4. Semjen L., Lipshits M. Temporal control and motor control: two functional modules which may be influenced differentially during microgravity // II Human Movement Science. 1998. V. 17. Р. 77-93.

5. Gurfinkel E. V., Lipshits M. I., Droulez J. Measurements of human force control during a constrained arm motion using a force-actuated joystick // J Neurophysiol. 1995. V. 73. № 3. Р. 1201-1222.

6. Суконщиков А. А., Крюкова Д. Ю. Нейроподобные сети Петри при моделировании социальных процессов // Программ. продукты и системы вузов. № 2. 2011. С. 25-30.

7. Советов Б. Я., Яковлев С. А. Моделирование систем : учеб. для студентов вузов. М. : Высш. шк., 2001. 342 с.

8. Peterson J. Petri net theory and the modeling of systems. Prentice-Hall, 1981. 290 p.

9. Tsapko S. G., Tsapko G. P., Tarakanov D. V., Savenko I. I. Organization of Continuous Process Simulation via E-network // Applied Mechanics and Materials (2015). V. 756. Р. 500-506.

10. Брагинский М. Я., Бурыкин Ю. Г., Тараканов Д. В. Моделирование человеко-машинных систем с учетом влияния световых стимулов на человека-оператора // Вестник кибернетики. 2016. № 1. С. 63-73.

11. Leclercq E. et al. Petri nets design based on neural networks // ESANN 2008, 16th European Symposium on Artificial Neural Networks, Bruges, Belgium. April 23-25, 2008, Proceedings. Р. 529-534.

12. Сочнев А. Н. Оптимизация функционирования систем с использованием ней-росетевых моделей сетей Петри // Матем. моделирование. 2014. Т. 26. № 4. С. 119-128.

13. Best E., Fernandez C. Non-sequential Processes, a Petri Net View // EATCS Monographs on Theoretical Computer Science. Berlin, 1988. № 13.

14. Брагинский М. Я., Еськов В. М., Майстренко Е. В. Дифференциальный датчик для регистрации высокоамплитудного тремора : свидетельство Рос. Федерации на полезную модель № 24920 РОСПАТЕНТ. М., 2002.

15. Никандров В. В. Психомоторика : учеб. пособие. СПб. : Речь, 2004. 104 с.

16. Braginsky M. Ya., Tarakanov D. V., Tsapko S. G. Hierarchical analytical and simulation modelling of human-machine systems with interference // Journal of Physics: Conference Series. 2017. V. 803 ; Information Technologies in Business and Industry (ITBI2016) : International Conference, 21-26 September 2016, Tomsk, Russian Federation. Р. 120-126.

17. Леоненков А. В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб. : БХВ-Петербург. 2003. 736 с.

18. Брагинский М. Я., Еськов В. М., Климов О. В. К вопросу о произвольности и непроизвольности микродвижений конечности человека (треморе) // Вестн. новых мед. технологий. 2002. № 3. С. 42-45.

19. Braginsky M. Ya., Tarakanov D. V., Tsapko S. G. E-Network Modelling of Process Industrial Control Systems in Building Computer Simulators // Control and Communications (SIBCON) : Proceedings of the XII International Siberian Conference, Moscow. May 12-14, 2016. Р. 185-191.


Review

For citations:


Braginsky M.Ya., Tarakanov D.V. E-network hierarchical modeling of voluntary and involuntary movements of a human-operator using parametric neural network identification. Proceedings in Cybernetics. 2017;(3 (27)):19-25.

Views: 153


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)