Preview

Proceedings in Cybernetics

Advanced search

Mathematical simulation of the stress-strain state structures from 3d-periodic MATERIALS UNDER THERMAL loads

Abstract

Nowadays 3D-periodic composite materials are widely used in the design of the bearing and enclosing structures. Such materials are multifunctional, one of the important functions of their application is to protect the bearing structures and vital components of machines and mechanisms from strong thermal action. To assess the strength of the structure under thermal action, it is necessary to be able to calculate the thermal stresses. To find the stresses occuring in the constructions made of 3D-periodic materials, the method of asymptotic splitting (also called the method of cellular functions), developed by the authors together with prof. Yu. V. Nemirovsky. Two scales of description are introduced: the scale of the periodic cell and the scale of the entire construction, and three levels of description: the real level, the macro level and the level of the periodic cell. The problem of minimization of the conditional functional for the macro environment, the corresponding boundary value problems for the macro continuum and the cell boundary value problems are obtained, the solution of which makes it possible to calculate deformations and stresses for the real level of the description from the effect of thermal loads. It is established that the components of the thermal expansion tensor for the macro environment depend both on the values of the thermal expansion coefficients for the matrix and the inclusions, and on the elastic properties of the matrix and inclusions. In addition, they depend on the shape of the inclusions, their location within the periodic cell, the volume content of inclusions and the temperature distribution inside the cell. An example of heating a multilayer periodic wall is considered.

About the Authors

G. L. Gorynin
Surgut State University
Russian Federation


A. F. Vlasko
Surgut State University
Russian Federation


References

1. Gorynin Yu. G. Nemirovskii Simulation of the process of heat conduction for 2D periodic anisotropic composites // Journal of Mathematical Sciences. 2016. Vol. 215. №. 2. Р. 183-195.

2. Горынин Г. Л., Власко А. Ф. Математическое моделирование макрохарактеристик процесса теплопроводности для волокнистых материалов при расчете строительных конструкций на действие тепловых нагрузок // Вестн. СибАДИ. 2012. Вып. 3 (25). С. 69-74.

3. Горынин Г. Л., Немировский Ю. В. Метод ячейковых функций для описания свойств периодических материалов и конструкций, выполненных из них // XI Всерос. съезд по фундаментальным проблемам теоретической и прикладной механики : сб. докл. Казань, 20-24 августа 2015, г. Казань : Изд-во Казан. ун-та, 2015. С. 1034-1036.

4. Горынин Г. Л., Власко А. Ф. Математическое моделирование механических свойств армогрунтов // Техника и технологии строительства. 2015. Вып. 2. С. 11-17.

5. Nowacki W. Thermoelasticity. Oxford ; Warszava : Pergamon Press, PWN, 1962.

6. Yu A. et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites // Advanced Materials. 2008. V. 20. №. 24. P. 4740-4744.

7. Zhou W. et al. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity // Composites. Part A: Applied Science and Manufacturing. 2009. V. 40. № 6. Р. 830-836.

8. Peng Q., Ji W., De S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study //Computational Materials Science. 2012. V. 56. P. 11-17.

9. Facca A. G., Kortschot M. T., Yan N. Predicting the elastic modulus of natural fibre reinforced thermoplastics // Composites. Part A: Applied Science and Manufacturing. 2006. V. 37. № 10. P. 1660-1671.

10. Putz K. W. et al. Elastic modulus of single-walled carbon nanotube/poly (methyl methacrylate) nanocomposites // Journal of Polymer Science. Part B: Polymer Physics. 2004. V. 42. № 12. P. 2286-2293.

11. Gojny F. H. et al. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content // Composites science and technology. 2004. V. 64. № 15. P. 2363-2371.

12. Song Y. S., Youn J. R. Modeling of effective elastic properties for polymer based carbon nanotube composites // Polymer. 2006. V. 47. № 5. P. 1741-1748.

13. Porfiri M., Gupta N. Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites //Composites. Part B: Engineering. 2009. V. 40. № 2. P. 166-173.

14. Sanchez-Palencia E. Non-homogeneous media and vibration theory. New York : Springer-Verlag, 1980.


Review

For citations:


Gorynin G.L., Vlasko A.F. Mathematical simulation of the stress-strain state structures from 3d-periodic MATERIALS UNDER THERMAL loads. Proceedings in Cybernetics. 2017;(3 (27)):138-152.

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)