Preview

Proceedings in Cybernetics

Advanced search

SYSTEM ANALYSIS, METHODS AND ALGORITHMS FOR DECISION MAKING TO INCREASE THE ENERGY EFFICIENCY OF SETTLEMENT

https://doi.org/10.34822/1999-7604-2020-1-6-12

Abstract

Cities today face many challenges, among which energy efficiency is a key requirement. This problem has been the subject of many works both in Russia and abroad. One way to improve the energy efficiency of a Smart city is to manage energy consumption in smart homes. This paper provides an analysis of two ways to improve the energy efficiency of Smart cities using agent training systems and the Internet of things. A comparative analysis of the proposed methods in terms of “The degree of energy consumption reduction” is made.

About the Authors

I. V. Kutuev
Department of Information Technology and Communication of Surgut City, Surgut, Russia
Russian Federation
E-mail: kutuevivan@gmail.com


D. A. Fedorov
Surgut State University, Surgut, Russia
Russian Federation


K. I. Bushmeleva
Surgut State University, Surgut, Russia
Russian Federation


References

1. Умный город: концепция, стандартизация и реализация смарт-сити. URL: http://1234g.ru/novosti/smart-city (дата обращения: 19.11.2019).

2. Технология ценозависимого потребления. URL: https://so-ups.ru/?id=dr (дата обращения: 19.11.2019).

3. Кутуев И. В., Бушмелева К. И. Анализ информационных систем используемых для расчета искусственного освещения // Инновационные, информационные и коммуникационные технологии : сб. трудов XV Междунар. науч.-практ. конф. / под. ред. С. У. Увайсова. М. : Ассоциация выпускников и сотрудников ВВИА им. проф. Жуковского, 2019. С. 71–75.

4. Ивашкин Ю. А. Мультиагентное моделирование в имитационной системе Simplex3. М. : Лаборатория знаний, 2016. 350 с.

5. Mahapatra C., Moharana A. K., Leung V. C. M. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings // Sensors (Basel). 2017. No. 17 (12). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751629/ (дата обращения: 22.11.2019).

6. Армирование обучения. Reinforcement learning. URL: https://ru.qwe.wiki/wiki/Rein forcement_learning (дата обращения: 23.03.2020).

7. Sarangi S. R., Goel S., Singh B. Energy Efficient Scheduling in IoT Networks // SAC 2018: Symposium on Applied Computing, April 9–13, 2018, Pau, France. ACM, NewYork, NY, USA, 8 p. https://doi.org/10.1145/3167132.3167213.

8. Yan L., Luo J., Jha N. K. Joint Dynamic Voltage Scaling and Adaptive Body Biasing for Heterogeneous Distributed Real-time Embedded Systems // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2005. Vol. 24, No. 7. P. 1030–1041.


Review

For citations:


Kutuev I.V., Fedorov D.A., Bushmeleva K.I. SYSTEM ANALYSIS, METHODS AND ALGORITHMS FOR DECISION MAKING TO INCREASE THE ENERGY EFFICIENCY OF SETTLEMENT. Proceedings in Cybernetics. 2020;(1 (37)):6-12. (In Russ.) https://doi.org/10.34822/1999-7604-2020-1-6-12

Views: 466


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)