Preview

Proceedings in Cybernetics

Advanced search

DATA ANOMALIES IN BUSINESS PROCESS MODELS

https://doi.org/10.34822/1999-7604-2020-1-53-60

Abstract

The article is devoted to the problem of validating business processes when developing solutions based on business process modeling platforms. The article provides a classification of the currently known models of validating data flows in business processes and also considers the types of business processes models: Petri nets, metagraphs, activity-based models, combined models, data flow matrix. The advantages and disadvantages of each model are analyzed, as well as a brief description of the main components of the models. The types of data anomalies and the algorithms used to validate the data flow of a business process are presented. Particular attention is paid to validation methods that use the data flow matrix as the main tool for analyzing data flows. An algorithm for checking anomalies in the absence and redundancy of data using a data flow matrix is given. An example of a model in which a business process works with several domain data models is analyzed. The analyzed example leads to the conclusion that the algorithms built upon the data flow matrix are false when working with several domain data models. The article proposes to find out the possibility of using an ontological model of conceptual objects to identify semantic conflicts between data sets from a variety of domain models.

About the Authors

A. G. Ivashko
University of Tyumen, Tyumen, Russia
Russian Federation


E. O. Kabardinsky
University of Tyumen, Tyumen, Russia
Russian Federation


I. G. Semikhina
University of Tyumen, Tyumen, Russia
Russian Federation
E-mail: i.g.semikhina@utmn.ru


D. V. Semikhin
University of Tyumen, Tyumen, Russia
Russian Federation


References

1. Zo H., Nazareth D. L., Jain H. K. Service-oriented Application Composition with Evolutionary Heuristics and Multiple Criteria // Association for Computing Machinery (ACM) in ACM Transactions on Management Information Systems. 2019. Vol. 10, P. 1–28.

2. Aghabaghery R., Golpayegani A. H., Esmaeili L. A New Method for Organizational Process Model Discovery Through the Analysis of Workflows and Data Exchange Networks // Social Network Analysis and Mining. 2020. Vol. 10, No. 12. P. 1–15.

3. Rostami K., Heinrich R., Busch A., Reussner R. Architecture-Based Change Impact Analysis in Information Systems and Business Processes // IEEE International Conference on Software Architecture (ICSA), Gothenburg, 2017. P. 179–188.

4. Li X., Liu Y. A Formal Modeling Method for Workflow Based on Selection Logic // 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Wuhan, China, 2019. P. 116–119.

5. Sadiq S., Orlowska M. E., Sadiq W., Foulger C. Data Flow and Validation in Workflow Modelling // Conferences in Research and Practice in Information Technology. 2004. P. 1–8. URL: https://crpit.scem.westernsydney.edu.au/confpapers/CRPITV27Sadiq.pdf (дата обращения: 07.02.2020).

6. Sun S., Zhao L., Sheng O. Data Flow Modeling and Verification in Business Process Management // AMCIS 2004 Proceedings. P. 4064–4073.

7. Chadli N., Kabbaj M. I., Bakkoury Z. Detection of Dataflow Anomalies in Business Process An Overview of Modeling Approaches. // EasyChair Preprint No. 226. 2018. P. 1–6. URL: https://easychair.org/publications/preprint_open/bVXK (дата обращения: 07.03.2020).

8. Petri C. Communication with Automata. DTIC Research Report AD0630125, Defense Technical Information Centre. 1966. 97 p.

9. Сети Петри – математический аппарат для моделирования. URL: http://bourabai.kz/ cm/petri_nets.htm/ (дата обращения: 07.03.2020).

10. Stackelberg S., Putze S., Mülle J., Böhm K. Detecting Data-Flow Errors in BPMN 2.0 // Open Journal of Information Systems (OJIS). Vol. 1. P. 1–19.

11. Астанин С. В., Драгныш Н. В., Жуковская Н. К. Вложенные метаграфы как модели сложных объектов // Инженер. вест. Дона. 2012. № 4 (часть 2). URL: http://ivdon.ru/ru/ magazine/archive/n4p2y2012/1434 (дата обращения: 07.03.2020).

12. Кропотин А. А., Бидуля Ю. В., Ивашко А. Г., Самойлов М. Ю. Онтологический метод проверки семантической несогласованности реляционных баз данных и официальных документов // Вестн. Тюмен. гос. ун-та. Физико-математическое моделирование. Нефть, газ, энергетика. 2018. Т. 4, № 3. С. 120–131.


Review

For citations:


Ivashko A.G., Kabardinsky E.O., Semikhina I.G., Semikhin D.V. DATA ANOMALIES IN BUSINESS PROCESS MODELS. Proceedings in Cybernetics. 2020;(1 (37)):53-60. (In Russ.) https://doi.org/10.34822/1999-7604-2020-1-53-60

Views: 223


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)