MEASURING WIND VELOCITY USING UNMANNED AERIAL VEHICLE
https://doi.org/10.35266/1999-7604-2023-3-52-59
Abstract
The article discusses a method for determining the wind velocity values at a desired point of the atmospheric boundary layer using a multirotor unmanned aerial vehicle. Wind velocity is calculated via a multicopter in hovering mode at a target point using current measurements of the thrust vector angle, the power consumed by each engine, and the angle of the frame orientation relative to the boresight. Wind vector measurement errors associated with different angles and windage of the body are compensated by rotating the unmanned aerial vehicle around the vertical axis with subsequent averaging of the accumulated data.
Keywords
About the Authors
Yuri B. PopovRussian Federation
Candidate of Sciences (Engineering), Docent
Anton P. Kornakov
Russian Federation
Student
Kseniya Yu. Popova
Russian Federation
Candidate of Sciences (Physics and Mathematics), Docent
Evgeniy V. Makarov
Russian Federation
Head of the Laboratory
References
1. Khan A. C., Alvi B. A., Safi E. A. et al. Drones for good in smart cities: A review. In: Proceedings of the International Conference on Electrical, Electronics, Computers, Communications, Mechanical and Computing (EECCMC), January 28‒29, 2018, India. 2018. URL: https://www.researchgate.net/publication/ 316846331_Drones_for_Good_in_Smart_CitiesA_ Review (accessed: 15.06.2023).
2. Floreano D., Wood R. J. Science, technology and the future of small autonomous drones. Nature. 2015;521(7553):460‒466.
3. Rastorguev I. P. Bespilotnye tekhnologii monitoringa pogodnykh uslovii. Heliogeophysical Research. 2014;(8):51–54. (In Russian).
4. Brosy C., Krampf K., Zeeman M. et al. Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmos Meas Tech Discuss. 2017;10:2773–2784.
5. Sitnikov N. M., Akmulin D. V., Borisov Yu. A. et al. Ispolzovanie bespilotnykh letatelnykh apparatov dlia monitoringa atmosfery. Meteorоlogiia i gidrologiia. 2013;(1):90–99. (In Russian).
6. Chang C.-C., Chang C.-Y., Wang J.-L. et al. An optimized multicopter UAV sounding technique (MUST) for probing comprehensive atmospheric variables. Chemosphere. 2020;254:126867.
7. Kurakov S. A., Zuev V. V. Unmanned aerial vehicle for measuring vertical profiles of the meteorological parameters in the atmospheric boundary layer. Optika atmosfery i okeana. 2016;29(11):994–999. (In Russian).
8. Popov Yu. B., Karpushin P. A., Krasnenko N. P. et al. Meteorological multi-rotor unmanned aerial complex and its application for monitoring of the atmosphere. IOP Conf Ser: Earth Environ Sci. 2022;1040:012006.
9. Kurakov S. A., Kurakova P. S., Kurakova O. A. et al. Method of the wind speed and its directions horizontal and vertical components averaged values determi-nation. RU Patent 2650094C2. No. 2016119943, filed May 23, 2016, issued April 6, 2018. URL: https://i.moscow/patents/RU2650094C2_20180406 (accessed: 15.06.2023). (In Russian).
10. Opredelenie skorosti dvizheniia vozdukha. URL: https://ivgpu.ru/images/docs/ob-universitete/instituty-fakultety-kafedry/ti/fakultety-kafedry/fttiim/tb/publi-katsii/opred-skorosty.pdf (accessed: 15.06.2023). (In Russian).
11. Kochin A. V., Treshchalin A. P. Method for determining averaged wind speed vector using an unmanned aerial vehicle. RU Patent 2695698С1. No. 2018132992, filed September 17, 2018, issued July 25, 2019. URL: https://patenton.ru/patent/RU2695698C1 (accessed: 15.06.2023). (In Russian).
12. Kaplin A. Yu., Stepanov M. G. Method for determining wind speed and direction using unmanned aircraft. RU Patent 2744772С1. No. 2020127102, filed August 12, 2020, issued March 15, 2021. URL: https://patenton.ru/patent/RU2744772C1 (accessed: 15.06.2023). (In Russian).
13. Markeev A. P. Teoreticheskaia mekhanika. Moscow: CheRo; 1999. 572 p. (In Russian).
14. Bolshakov V. D. Teoriia oshibok nabliudenii. Moscow: Nedra; 1983. 223 p. (In Russian).
Review
For citations:
Popov Yu.B., Kornakov A.P., Popova K.Yu., Makarov E.V. MEASURING WIND VELOCITY USING UNMANNED AERIAL VEHICLE. Proceedings in Cybernetics. 2023;22(3):52-59. (In Russ.) https://doi.org/10.35266/1999-7604-2023-3-52-59