Preview

Proceedings in Cybernetics

Advanced search

MULTI-CRITERIAL SCHEDULING OF A SPACECRAFT CONTROL CENTER’S OPERATION ON A DYNAMIC MODEL WITH DEAD-END CONTROLS

https://doi.org/10.35266/1999-7604-2023-3-82-98

Abstract

The article is devoted to the solution of a problem of multi-criterial scheduling for execution of calculations of a large number of time-consuming computational tasks being solved simultaneously when implementing the time-sharing mode for their solutions in software and hardware’s multiprocessor computing systems by the spacecraft control center. A dynamic recurrent model with dead-end controls is used to implement the schedule of organizing software command information with control sectors. The criteria for selecting an efficient option of a daily schedule for the control sectors’ operation are determined, with the schedule being presented as time intervals of access to the computing system’s resources. Compared to the traditional algorithms of discrete optimization, the method of dead-ends control is more efficient in calculation in the frame-work of a dynamic model. An example of calculations conducted by the dead-end controls algorithm for the operational program, which is used on board of the spacecraft during a communication session, is given.

About the Author

Viktor P. Korneenko
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
Russian Federation

Candidate of Sciences (Engineering), Docent

vkorn@ipu.ru



References

1. Nagibin S. Ya., Pochukaev V. N., Ukhlinov L. M. Struktura i printsipy postroeniia matematicheskogo obespecheniia Tsentra upravleniia poletami kosmicheskikh apparatov. Vestnik Rossiiskogo obshchestva informatiki i vychislitelnoi tekhniki. 1995(5):66–72. (In Russian).

2. Manuilov Yu. S., Kalinin V. N. Upravlenie kosmicheskimi apparatami i sredstvami nazemnogo kompleksa upravleniia. St. Petersburg: Mozhaisky Military Aerospace Academy; 2010. 609 p. (In Russian).

3. Kalinin V. N. Mathematical model of informational interaction of the spacecraft with a surface of the Earth. SPIIRAS Proceedings. 2014;(3):33–56. (In Russian).

4. Manuilov Yu. S., Moskvin B. V., Pavlov D. A. Model planirovaniia raspredelennoi obrabotki informatsii v razlichnykh zveniakh avtomatizirovannykh sistem upravleniia kosmicheskimi apparatami. Proceedings of the Mozhaisky Military Space Academy. 2014;(642):32–35. (In Russian).

5. Komandrovsky V. G. Job scheduling for a computing system. Avtomatika i telemekhanika. 2005;(12):65–74. (In Russian).

6. Golubev I. A. Planirovenie zadach v raspredelennykh vychislitelnykh sistemakh na osnove metadannykh. Cand. Sci. (Engineering) Thesis. St. Petersburg: Saint Petersburg Electrotechnical University; 2014. 135 p. (In Russian).

7. Brobcrg J. А. Effective task assignment strategies for distributed systems under highly variable workloads. Dr. (Philosophy) Thesis. Melbourne, Victoria, Australia: RMIT University; 2006. 208 p.

8. Kleinrock L. Queuing systems. Vol. 2. Computer applications. Tsybakov B. S., editor. Moscow: Mir; 1979. 600 p. (In Russian).

9. Bakanov V. M. Mnogomashinnye kompleksy i mnogoprotsessornye sistemy. Moscow: Moscow State University of Instrument Engineering and Computer Science; 2014. 126 p. (In Russian).

10. Kolpin M. A., Moskvin B. V. The approach to technology optimization of operational planning of the use of landing automated complex spaceship control. i-methods. 2015;7(3):10–14. (In Russian).

11. Minakov E. P., Privalov A. E., Bugaichenko P. Yu. A model for evaluating the control efficiency of multisatellite orbital systems. Trudy MAI. 2022;(125):1–26. (In Russian).

12. Anichkin A. S., Semenov V. A. A survey of emerging models and methods of scheduling. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2014;26(3):5‒50. (In Russian).

13. Lazarev A. A. Teoriia raspisanii. Metody i algoritmy. Monograph. Moscow: V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences; 2019. 408 p. (In Russian).

14. Zimin I. N., Ivanilov Yu. P. Solution of network planning problems by reducing them to optimal control problems. Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki. 1971;11(3):632–641. (In Russian).

15. Kalinin V. N., Sokolov B. V. A dynamic model and an optimal scheduling algorithm for a set of activities with bans on interrupts. Avtomatika i telemekhanika. 1987;(1):106–114. (In Russian).

16. Ivanov D., Dolgui A., Sokolov B. et al. A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0. International Journal of Production Research. 2016;54(2):386–402.

17. Richter K. Dynamic tasks of discrete optimization. Berlin, Boston: De Gruyter; 1982. 114 p. (In German).

18. Korneenko V. P. Metody optimizatsii. Moscow: Vyssh. shk.; 2007. 663 p. (In Russian).

19. Korneenko V. P. An efficient algorithm of dead-end controls for solving combinatorial optimization problems. Automation and Remote Control. 2021;82:1692–1705.

20. Yablonsky S. V. Vvedenie v diskretnuiu matematiku. Moscow: Nauka; 1986. 384 p. (In Russian).

21. Bendat J. S., Piersol A. G. Random data: Analysis and measurement procedures. Privalsky V. E., Kochubinsky A. I., translators; I. N. Kovalenko, editor. Moscow: Mir; 1989. 540 p. (In Russian).

22. Klimov G. P., Lyakhu A. K., Matveev V. F. Matematichekie modeli sistem s razdeleniem vremeni. Kishinev: Shtiintsa; 1983. 110 p. (In Russian).

23. Bellman R. Dynamic programming. Andreeva I. M., Korbut A. A., Romanovsky I. V., Sokolova I. N., translators; N. N. Vorobyev, editor. Moscow: Izd-vo inostr. lit.; 1960. 400 p. (In Russian).

24. Sigal I. Kh., Ivanova A. P. Vvedenie v prikladnoe diskretnoe programmirovanie: modeli i vychislitelnye algoritmy. Moscow: Fizmatlit; 2002. 240 p. (In Russian).

25. Pisinger D. A minimal algorithm for the 0-1 Knapsack Problem. Operations Research. 1997;46(5):758–767.

26. Conway R. W., Maxwell W. L., Miller L. W. Theory of scheduling. Kokotushkin V. A., Mikhalev D. G., translators; Basharin G. P., editor. Moscow: Nauka; 1975. 359 p. (In Russian).

27. Korneenko V. P. Metod lokalnogo agregirovaniia dannykh obektov s mnogourovnevoi strukturoi v poriadkovykh shkalakh. In: Proceedings of the Fourteenth International Conference “Management of Large-Scale System Development (MLSD-2021)”, September 27‒29, 2021, Moscow. Moscow: V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences; 2021. p. 485–493. (In Russian).

28. Korneenko V. P. Approximation matrix method for weights formation of objects in multicriteria problems. Proceedings in Cybernetics. 2021;(1):51‒62. (In Russian).

29.


Review

For citations:


Korneenko V.P. MULTI-CRITERIAL SCHEDULING OF A SPACECRAFT CONTROL CENTER’S OPERATION ON A DYNAMIC MODEL WITH DEAD-END CONTROLS. Proceedings in Cybernetics. 2023;22(3):82-98. (In Russ.) https://doi.org/10.35266/1999-7604-2023-3-82-98

Views: 69


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)