IDENTIFYING PARAMETERS OF A PIECEWISE LINEAR RISK FUNCTION WITH A METHOD OF ANTIROBUST ESTIMATION
https://doi.org/10.35266/1999-7604-2023-3-99-104
Abstract
The article reviews literature on identification methods for parameters of regression models, including those based on Chebyshev metrics. The publications contain data on the development of an algorithm for the unambiguous definition of Chebyshev projection; a new method that combines Minkowskian distance and Chebyshev distance, with both being used as a similarity measure in the clustering process when grouping data; generalizations of particular goal setting for curves and surface fitting to the data observed or calculated as a result of replacing least squares with the Chebyshev norm; and integral estimates of the anthropogenic transformation of the territory using multidimensional statistical methods. Using the anti-robust method of estimation, the authors have developed a method to estimate unknown parameters of a regression piecewise linear risk function, whose aim is to solve a linear Boolean programming problem. The risk function of the dynamics of the price per square meter of living space of dwellings in the housing market in the Russian Federation is built using the least modules method and the anti-robust estimation method. Average pricing for silicate wall blocks, concrete floor slabs, and ready-mixed concrete are used as independent factors in the model. Both versions of the models built describe the dynamics of the output indicator profoundly, as evidenced by the high values of adequacy criteria, and therefore can efficiently solve the forecasting problems. It has been established that the number of maximum module errors of the risk model approximation is equal to three, i. e. the number of independent variables, when applying the anti-robust method.
About the Authors
Sergey I. NoskovRussian Federation
Doctor of Sciences (Engineering), Professor
Vladimir V. Tirskikh
Russian Federation
Candidate of Sciences (Physics and Mathematics), Docent
References
1. Aivazyan S. A. Metody ekonometriki. Moscow: Magistr: Infra-M; 2010. 506 p. (In Russian).
2. Orlov A. I. Prikladnaia statistika. Moscow: Ekzamen; 2004. 656 p. (In Russian).
3. Greene W. H. Econometric analysis. NY: New York University; 2002. 1026 p.
4. Tyrsin A. N., Azaryan A. A. Otsenivanie nelineinykh regressionnykh zavisimostei na osnove obobshchennogo metoda naimenshikh modulei. Obozrenie prikladnoi i promyshlennoi matematiki. 2018;25(2):185–187. (In Russian).
5. Panyukov A. V., Tyrsin A. N. Vzaimosviaz vzveshennogo i obobshchennogo variantov metoda naimenshikh modulei. Izvestiia Chelyabinskogo nauchnogo tsentra UrO RAN. 2007;(1):6–11. (In Russian).
6. Miller B. M., Kolosov K. S. Robust estimation based on the least absolute deviations method and the Kalman filter. Avtomatika i telemekhanika. 2020;(11):72–92. DOI 10.31857/S0005231020110057. (In Russian).
7. Noskov S. I. Method of antirobast estimation of linear regression parameters: Number of maximum on the module of approximation errors. South-Siberian Scientific Bulletin. 2020;(1):51–54. (In Russian).
8. Zorkaltsev V. I. Chebyshevskie priblizheniia mogut obkhoditsia bez usloviia Khaara. In: Proceedings of the International Symposium devoted to the 100th Anniversary of Mathematical Education in the East Siberia and 80th Anniversary of birth of Prof. Vasilyev O. V. “Dinamicheskie sistemy, optimalnoe upravlenie i matematicheskoe modelirovanie”, October 7–12, 2019, Irkutsk. Irkutsk: Irkutsk State Unviersity; 2019. p. 29–33. (In Russian).
9. Surono S., Putri R. D. A. Optimization of Fuzzy C-Means clustering algorithm with combination of Minkowski and Chebyshev distance using principal component analysis. Int J Fuzzy Syst. 2021;23:139–144.
10. Al-Subaihi I., Watson G. A. Fitting parametric curves and surfaces by l∞ distance regression. Bit Numer Math. 2005;45:443–466.
11. Shabanov D. I., Iolin M. M., Borzova A. S. et al. Use of multivariate statistical methods for estimation of the spatial changes in anthropogenic transformation (land use). Geology, Geography and Global Energy. 2014;(4):176–185. (In Russian).
12. Sidorovich A. S., Sasin E. A. Sravnitelnaia kharakteristika osnovnykh metrik rasstoianii. In: Proceedings of the XXXI International Scientific Conference “Matematicheskie metody v tekhnike i tekhnologiiakh”, October 22–26, 2018, Minsk. Vol. 8. Minsk; 2018. p. 82–84. (In Russian).
13. Noskov S. I. Identifikatsiia parametrov kusochno-lineinoi funktsii riska. In: Proceedings of the Eighths International Research-to-Practice Conference “Transportnaia infrastruktura Sibirskogo regiona”, March 28 – April 1, 2017, Irkutsk. In 2 vols. Vol. 1. Irkutsk: IrGUPS; 2017. p. 417–421. (In Russian).
14. Shipitsyna R. E., Vitvitsky E. E. Comparison of the convenience of using two software products in solving the transport problem of linear programming: LPSolve IDE and Microsoft Excel. In: Proceedings of the V National Research-to-Practice Conference “Obrzovanie. Transport. Innovatsii. Stroitelstvo”, April 28–29, 2022, Omsk. Omsk: The Siberian State Automobile and Highway University (SibADI); 2022. p. 250–254. (In Russian).
15. Noskov S. I., Khonyakov A. A. Application of risk function to model description of price fluctuations in the real estate market. Engineering and Construction Bulletin of the Caspian Region. 2021;(3):77–82. DOI 10.52684/2312-3702-2021-37-3-77-82. (In Russian).
Review
For citations:
Noskov S.I., Tirskikh V.V. IDENTIFYING PARAMETERS OF A PIECEWISE LINEAR RISK FUNCTION WITH A METHOD OF ANTIROBUST ESTIMATION. Proceedings in Cybernetics. 2023;22(3):99-104. (In Russ.) https://doi.org/10.35266/1999-7604-2023-3-99-104