Preview

Proceedings in Cybernetics

Advanced search

EVALUATING EFFECTIVENESS OF TESTS FOR HETEROSCEDASTICITY

https://doi.org/10.35266/1999-7604-2024-1-11

Abstract

The article studies the effectiveness of various statistical tests for heteroscedasticity in a model. A research design and a principle for building synthetic data with various types of heteroscedasticity are described. The fi ndings of an analysis are given. The most effective tests for detecting homo- and heteroscedasticity are determined. A classifi cation trees mechanism is applied to identify the most effective tests according to the sampling properties, and such pattern is demonstrated. In applied studies, there is a need to carry out further research aimed at detecting the most suitable statistical test based on the given data properties. In addition, it is concluded that each considered test fails for different types of heteroscedasticity. Thus, it is necessary to conduct further theoretical studies in the fi eld as well as design new approaches for detecting various types of heteroscedasticity.

About the Author

A. D. Cheremukhin
Nizhny Novgorod State University of Engineering and Economics, Knyaginino
Russian Federation

Candidate of Sciences (Economics), Docent



References

1. Асансеитова С. М., Ковалева Э. В., Свинухов В. Г. Оценка влияния экпорта и прямых иностранных инвестиций на ВВП на примере стран-членов ЕАЭС // Вестник НГИЭИ. 2018. № 9. С. 60‒70.

2. Молодченков Д. А. Результаты экспериментальных исследований профилеобразующего катка для гребневого посева пропашных культур // Вестник НГИЭИ. 2018. № 9. С. 114‒127.

3. Lyon J. D., Tsai C.-L. A comparison of tests for heteroscedasticity. The Statistician. 1996;45(3):337–349.

4. Harvey A. C., Phillips G. D. A. A comparison of the power of some tests for heteroskedasticity in the general linear model. Journal of Econometrics. 1974;2:307–316.

5. Griffi ths W. E., Surekha K. A Monte Carlo evaluation of the power of some tests for heteroscedasticity. Journal of Econometrics. 1986;31(2):219–231.

6. Dufour J.-M., Khalaf L., Bernard J.-T. et al. Simulation-based fi nite-sample tests for heteroskedasticity and ARCH effects. Journal of Econometrics. 2004;122(2):317–347.

7. Uyanto S. S. Monte Carlo power comparison of seven most commonly used heteroscedasticity tests. Communications in Statistics – Simulation and Computation. 2019;51(4):2065–2082.

8. Bickel P. J. Using residuals robustly I: Tests for heteroscedasticity, nonlinearity. Ann Statist. 1978;6(2):266–291.

9. Ramsey J. B. Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology). 1968;31(2):350–371.

10. Carroll R. J., Ruppert D. On robust tests for heteroscedasticity. Ann Statist. 1981;9(1):206–210.

11. Breusch T. S., Pagan A. R. A simple test for heteroscedasticity and random coeffi cient variation. Econometrica. 1979;47(5):1287–1294.

12. Cook R. D., Weisberg S. Diagnostics for heteroscedasticity in regression. Biometrika. 1983;70(1):1–10.

13. Evans M. A., King M. A point optimal test for heteroscedastic disturbances. Journal of Econometrics. 1985;27(2):163–178.

14. Goldfeld S. M., Quandt R. E. Some tests for homoscedasticity. Journal of the American Statistical Association. 1965;60(310):539–547.

15. Harrison M. J., McCabe B. P. M. A test for heteroscedasticity based on ordinary least squares residuals. Journal of the American Statistical Association. 1979;74(366a):494–499.

16. Horn P. Heteroscedasticity of residuals: A non-parametric alternative to the Goldfeld‒Quandt peak test. Communications in Statistics ‒ Theory and Methods. 1981;10(8):795–808.

17. Simonoff J. S., Tsai C.-L. Use of modified profile likelihood for improved tests of constancy of variance in regression. Appl Statist. 1994;43(2):357–370.

18. Verbyla A. P. Modelling variance heterogeneity: Residual maximum likelihood and diagnostics. Journal of the Royal Statistical Society. Series B (Methodological). 1993;55(2):493–508.

19. White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48(4):817–838.

20. Wilcox R. R., Keselman H. J. Detecting heteroscedasticity in a simple regression model via quantile regression slopes. Journal of Statistical Computation and Simulation. 2006;76(8):705–712.

21. Yuce M. An asymptotic test for the detection of heteroscedasticity. Istanbul University Econometrics and Statistics e-Journal. 2008;8:33–44.

22. Zhou Q. M., Song P. X.-K., Thompson M. E. Profiling heteroscedasticity in linear regression models. Canadian Journal of Statistics. 2015;43(3):358–377.


Review

For citations:


Cheremukhin A.D. EVALUATING EFFECTIVENESS OF TESTS FOR HETEROSCEDASTICITY. Proceedings in Cybernetics. 2024;23(1):81-88. (In Russ.) https://doi.org/10.35266/1999-7604-2024-1-11

Views: 184


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)