CLASSIFYING PLANTS’ HEALTH USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
https://doi.org/10.35266/1999-7604-2024-2-3
Abstract
The study classifi es eight types of plants’ diseases using an adaptive neuro-fuzzy inference system (ANFIS). Haralick texture features obtained from plants’ images are applied as input data for a system. A hybrid algorithm consisting of a backward propagation of error and a gradient descent performed the ANFIS training. The ANFIS effi ciency was assessed on a test set through calculating accuracy, comprehensiveness, and the F1 score. The indicators obtained by this method were compared with other modern classifi cation methods.
About the Authors
Valentin V. BrykinRussian Federation
Postgraduate
Mikhail Ya. Braginsky
Russian Federation
Candidate of Sciences (Engineering), Docent
Dmitry V. Tarakanov
Russian Federation
Candidate of Sciences (Engineering), Docent
Inessa L. Nazarova
Russian Federation
Postgraduate, 1st Category Engineer
References
1. Гурлина Е. В. Разработка метода выявления текстурных свойств заданных классов изображений с использованием признаков Харалика // Перспективные информационные технологии (ПИТ 2020) : труды Междунар. науч.-технич. конф., 21–22 апреля 2020 г., г. Самара. Самара : Самарский научный центр РАН, 2020. С. 112–116.
2. Lofstedt T., Brynolfsson P., Asklund T. Gray-level invariant Haralick texture features // PLoS ONE. 2019. Vol. 14, no. 2. P. e0212110.
3. Брыкин В. В., Брагинский М. Я., Тараканов Д. В. и др. Классификация состояния растений средствами текстурного вейвлет-анализа и машинного обучения // Вестник кибернетики. 2024. Т. 23, № 1. С. 23–30. DOI 10.35266/1999-7604-2024-1-3.
4. Vyas A., Paik J. Review of the application of wavelet theory to image processing // IEIE Transactions on Smart Processing & Computing. 2016. Vol. 5, no. 6. P. 403‒417. DOI 10.5573/IEIESPC.2016.5.6.403.
5. Балаганский А. Ю., Гребеньков А. А. Вейвлет-преобразование для обработки изображений системы управления отоплением с применением методов машинного обучения // Информация и образование: границы коммуникаций. 2022. № 14. С. 147–150.
6. Mahajan V., Dhumale N. R. Leaf disease detection using fuzzy logic // International Journal of Innovative Research in Science, Engineering and Technology. 2018. Vol. 7, no 6. P. 6801–6807. DOI 10.15680/IJIRSET.2018.0706067.
7. Ashish P., Tanuja P. Survey on detection and classifi cation of plant leaf disease in agriculture environment // International Advanced Research Journal in Science, Engineering and Technology. 2017. Vol. 4, no. 4. P. 137–139. DOI 10.17148/iarjset/nciarcse.2017.40.
8. Thyagharajan K. K., Kiruba Raji I. A review of visual descriptors and classifi cation techniques used in leaf species identifi cation // Archives of Computational Methods in Engineering. 2019. Vol. 26. P. 933–960. DOI 10.1007/s11831-018-9266-3.
9. Алгоритм обучения anfis. URL: https://studfile.net/preview/9501084/page:11/ (дата обращения: 05.04.2024).
Review
For citations:
Brykin V.V., Braginsky M.Ya., Tarakanov D.V., Nazarova I.L. CLASSIFYING PLANTS’ HEALTH USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS). Proceedings in Cybernetics. 2024;23(2):23-30. (In Russ.) https://doi.org/10.35266/1999-7604-2024-2-3