Neural network surveillance system
https://doi.org/10.35266/1999-7604-2024-4-3
Abstract
The purpose of the paper is to design and implement an efficient and affordable automatic surveillance system, which can operate in real time and integrate with existing surveillance systems. The method presented includes analyzing existing solutions on the market, selecting and training a profound learning model for objects detection, developing user interfaces, containerizing of the application and testing the system in a real-world environment. The result is a system capable of detecting objects of interest in real time using neural networks and notifying the user of the detected items. This system is designed for public places like airports, railway stations, schools, and other institutions needing enhanced security
About the Authors
N. E. VasilenkoRussian Federation
Master’s Degree Student
N. A. Medvedeva
Russian Federation
Senior Lecturer
References
1. Ларина Ю. Событийный видеоконтроль // Безопасность. Достоверность. Информация. 2009. № 83. С. 28–40.
2. VideoNet PSIM – интеллектуальная система безопасности. URL: https://www.videonet.ru/ (дата обращения: 05.05.2024).
3. Распознавание образов с помощью искусственного интеллекта. URL: https://habr.com/ru/articles/709432/ (дата обращения: 05.05.2024).
4. YOLO: You Only Look Once – Real Time Object Detection – GeeksforGeeks. URL: https://www.geeks-forgeeks.org/yolo-you-only-look-once-real-time-object-detection/ (дата обращения: 05.05.2024).
5. Real-Time Object Identification Through Convolution Neural Network Based on YOLO Algorithm. URL: https://www.sciencepg.com/article/10.11648/j.mcs.20230805.11 (дата обращения: 05.05.2024).
6. YOLO with adaptive frame control for real-time object detection applications. URL: https://link.springer.com/article/10.1007/s11042-021-11480-0 (дата обращения: 05.05.2024).
7. D_0.06 YOLO – Head. URL: https://junha1125.github.io/blog/artificial-intelligence/2020-08-18-YOLO/ (дата обращения: 05.05.2024).
8. How to Train YOLOv8 Object Detection on a Custom Data- set. URL: https://blog.robofl ow.com/how-to-train-yolov8-on-a-custom-dataset/ (дата обращения: 05.05.2024).
Review
For citations:
Vasilenko N.E., Medvedeva N.A. Neural network surveillance system. Proceedings in Cybernetics. 2024;23(4):25-33. (In Russ.) https://doi.org/10.35266/1999-7604-2024-4-3