Preview

Proceedings in Cybernetics

Advanced search

SOLVING THE DIRECT KINEMATIC PROBLEM FOR A SIX-UNIT ROBOT MANIPULATOR

https://doi.org/10.35266/1999-7604-2024-2-5

Abstract

The study describes steps to solve the direct kinematic problem for a six-unit robot manipulator, the FANUC Robot M-20iA/35M. The problem solving is based on modern solid CAD modeling technologies combined with a physical modeling environment, as well as Simulink’s SimMechanics multi-unit spatial mechanisms. Simulink’s SimMechanics environment is used for visualizing the dynamics of the manipulator’s operating component. The manipulator’s matrix equation can then be used for solving the inverse kinematic problem.

About the Author

Oleg V. Gusev
Rybinsk State Aviation Technical University, Rybinsk
Russian Federation

Candidate of Sciences (Physics and Mathematics), Docent



References

1. FANUC global. URL: https://www.fanuc.com/ (дата обращения: 15.04.2024).

2. Лесков А. Г., Морошкин С. Д. Система технического зрения для определения расположения объектов // Экстремальная робототехника : тр. междунар. науч.-технич. конф., 24‒25 ноября 2016 г., г. Санкт-Петербург. СПб. : ООО «АП4Принт», 2016. С. 287‒290.

3. Angeles J. Fundamentals of robotic mechanical systems. Theory, methods and algorithms. 4th ed. Switzerland : Springer, 2014. 589 p.

4. Фу К., Гонсалес Р., Ли. К. Робототехника. М. : Мир, 1989. 624 с.

5. Колтыгин Д. С., Седельников И. А. Метод и программа решения прямой и обратной задачи кинематики для управления роботом-манипулятором // Системы. Методы. Технологии. 2020. № 4. C. 65–74. DOI 10.18324/2077-5415-2020-4-65-74.

6. Садков К. О., Моногаров С. И. Роботизированный манипулятор с шестью степенями свободы // Наука, техника и образование. 2018. № 8. C. 37–43.

7. Karger A. Singularity analysis of serial robot-manipulators // Journal of Mechanical Design. 1996. Vol. 118, no. 4. P. 520‒525.

8. Denavit J., Hartenberg R. S. A kinematic notation for lower-pair mechanisms based on matrices // Journal of Applied Mechanics. 1955. Vol. 22, no. 2. P. 215‒221.

9. Hayati S., Mirmirani M. Improving the absolute positioning accuracy of robot manipulators // Journal of Robotic Systems. 1985. Vol. 2, no. 4. P. 397‒413.

10. Brandstötter M., Angerer A., Hofbaur M. An analytical solution of the inverse kinematics problem of industrial serial manipulators with an ortho-parallel basis and a spherical wrist. // Proceedings of the Austrian Robotics Workshop, May 22‒23, 2014, Linz, Australia. Vol. 22. 2014. P. 7‒11.

11. Singla A., Singh G., Virk G. S. Matlab/simMechanics based control of four-bar passive lower-body mechanism for rehabilitation // Perspectives in Sciences. 2016. Vol. 8. P. 351‒354.

12. Hroncova D., Pastor M. Mechanical system and Sim-Mechanics simulation // American Journal of Mechanical Engineering. 2013. Vol. 1, n o. 7. P. 251‒255.

13. Achilli G. M., Logozzo S., Valigi M. C. et al. Underactuated soft gripper for helping humans in harmful works // Proceedings of I4SDG Workshop 2021 / Quaglia G., Gasparetto A., Petunya V., Carbone G., eds. Cham : Springer, 2021. P. 264‒272.

14. Гусев О. В. Имитационное моделирование захвата антропоморфной кисти руки // Вестник кибернетики. 2023. Т. 22, № 4. C. 18–25.

15. MATLAB live editor. URL: https://nl.mathworks. com/products/matlab/live-editor.html (дата обращения: 15.04.2024).


Review

For citations:


Gusev O.V. SOLVING THE DIRECT KINEMATIC PROBLEM FOR A SIX-UNIT ROBOT MANIPULATOR. Proceedings in Cybernetics. 2024;23(2):39-48. (In Russ.) https://doi.org/10.35266/1999-7604-2024-2-5

Views: 189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1999-7604 (Online)