METHOD FOR FORMING ORTHOGONAL FEATURES FOR OBJECT RECOGNITION IN FLAT IMAGES
https://doi.org/10.35266/1999-7604-2024-2-10
Abstract
The study discusses such an important aspect of computer vision in technical vision systems as object recognition features formation. Such systems, which are widely applied in a variety of industries, allow for the rapid acquisition of a vast amount of information. At the same time, information about the observed objects’ properties, which often include movement, as well as the geometric parameters of their shape, is collected. The authors propose using object recognition features, which are based on orthoexponential functions and which retain information about the studied object’s shape. Examples of calculated complex values of the shape matrix’s elements are presented for some regular geometric shapes’ contours. The shape matrix is obtained based on the decomposition coeffi cients of orthoexponential functions discussed in the study.
About the Authors
Vladimir V. KhramovRussian Federation
Candidate of Sciences (Engineering), Docent, Leading Researcher
Olga Yu. Mityasova
Russian Federation
Candidate of Sciences (Engineering)
References
1. Долгин Ю. Н., Васильев Г. И., Храмов В. В. Выбор информационных признаков для распознавания некоторых многомерных сигналов // Проектирование и применение микроэлектронных специализированных вычислителей : сб. науч. тр. М. : МИЭТ, 1985. С. 82–86.
2. Kramarov S., Khramov V. Methodology of formation of unite geo-informational space in the region // Modern Information Technology and IT Education. SITITO 2018 : Proceedings of the International Conference / Sukhomlin V., Zubareva E., eds. 2020. P. 309‒316. DOI 10.1007/978-3-030-46895-8_24.
3. Абдуллаева А. М., Аверченко Е. В., Александрова Т. С. и др. Возможности сочетания естественного и искусственного интеллектов в образовательных системах. М. : Изд. центр РИОР, 2023. 232 с.
4. Akperov I. G., Khramov V. V. Development of instruments of fuzzy identifi cation of extended objects based on the results of satellite monitoring // Advances in Intelligent Systems and Computing. 2019. Vol. 896. P. 325‒332. DOI 10.1007/978-3-030-04164-9_44.
5. Акперов И. Г., Акперов Т. И., Александрова Т. С. и др. Программа для формирования признаков контурного распознавания и идентификации информационных объектов : программа для ЭВМ № 2023680950 Российская Федерация, № 2023668703 ; заявл. 11.09.2023 ; опубл. 11.10.2023 ; заявитель ЧОУ ВО «Южный университет (ИУБиП)». URL: https://onlinepatent.ru/oftware/2023680950/ (дата обращения: 14.05.2024).
6. Lindenbaum T., Belyaev A., Grebenyuk E. et al. The method of identifying a person in formation of an educational trajectory // INTERAGROMASH 2022 : Proceedings of the XV International Scientific Conference, March 2‒4, 2022, Rostov-on-Don. Rostov-on-Don, 2023. P. 1323‒1332. DOI 10.1007/978-3-031-21219-2_148.
7. Дедус Е. Ф., Храмов В. В. Система признаков распознавания контуров произвольной формы // Тематический научно-технический сборник. Т. 2. М. : Изд-во Министерства обороны СССР, 1988. С. 21–23.
8. Akperov G. I., Grigoriev S. G., Işiklar A. et al. Cognitive modeling of university management support as a human-machine system // Informatics and Education. 2024. Vol. 39, no. 1. P. 65‒73. DOI 10.32517/0234-0453-2024-39-1-65-73.
Review
For citations:
Khramov V.V., Mityasova O.Yu. METHOD FOR FORMING ORTHOGONAL FEATURES FOR OBJECT RECOGNITION IN FLAT IMAGES. Proceedings in Cybernetics. 2024;23(2):76-80. (In Russ.) https://doi.org/10.35266/1999-7604-2024-2-10